A detection system based on digital image processing and machine learning classification was developed to detect normal and cancerous lung conditions. 340 data from LIDC –IDRI were processed through several stages. The first stage is pre-processing using three filter variations and contrast stretching, which reduce noise and increase image contrast. The image segmentation process uses Otsu Thresholding to clarify the ROI of the image. The texture feature extraction with GLCM was applied using 21 feature variations. Data extraction is used as a label value learned by the classification system in the form of SVM. The results of the training data classification are processed with a confusion matrix which shows that the high pass filter has higher accuracy than the other two variations. The proposed method was assessed in terms of accuracy, precision and recall. The model provided an accuracy of 99.67 % training data and 97.50 % testing data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.