Purpose
– The purpose of this paper is to evaluate the performance of the semi-active fluid damper. It is recognized that the performance of such a damper depends upon the magnetic and hydraulic circuit design. These dampers are generally used to control the vibrations in various applications in machine tools and robots. The present paper deals with the design of magneto-rheological (MR) damper. A finite element model is built to analyze and understand the performance of a 2D axi-symmetric MR damper. Various configurations of damper with modified piston ends are investigated. The input current to the coil and the piston velocity are varied to evaluate the resulting change in magnetic flux density (B), magnetic field (H), field dependent yield stress and magnetic force vectors. The simulation results of the various configurations of damper show that higher magnetic force is associated with plain piston ends. The performance of filleted piston ends is superior to that of other configurations for the same magnitude of coil current and piston velocity.
Design/methodology/approach
– The damper design is done based on the fact that mechanical energy required for yielding of MR fluid increases with increase in applied magnetic field intensity. In the presence of magnetic field, the MR fluid follows Bingham’s plastic flow model, given by the equation τ = η γ•+τ
y
(H) τ
>
τ
y
. The above equation is used to design a device which works on the basis of MR fluid. The total pressure drop in the damper is evaluated by summing the viscous component and yield stress component which is approximated as ΔP = 12ηQL/g3W + CτyL/g, where the value of the parameter, C ranges from a minimum of 2 (for ΔPτ ΔPη less than approximately 1) to a maximum of 3 (for ΔPτ/ΔPη greater than approximately 100). To calculate the change in pressure on either side of the piston within the cylinder, yield stress is required which is obtained from the graph of yield stress vs magnetic field intensity provided by Lord Corporation for MR fluid −132 DG.
Findings
– In this work, three different finite element models of MR damper piston are analyzed. The regression equations, contour plots and surface plots are obtained for different parameters. This study can be used as a reference for selecting the parameters for meeting different requirements. It is observed from the simulation of these models that the plain ends model gave optimum magnetic force and 2D flux lines with respect to damper input current. This is due to the fact that the plain ends model has more area when compared with that of other models. It is also observed that filleted ends model gave optimum magnetic flux density and yield stress. As there is reduced pole length in the filleted ends model, the MR fluid occupies vacant area, and hence results in increased flux density and yield shear stress. The filleted ends assist the formation of dense magnetic flux lines thereby increasing the flux density and yield stress. This implies that higher load can be carried by the filleted ends damper even with a smaller size.
Originality/value
– This work is carried out to manufacture different capacities of the dampers. This can be applied as vibration controls.
This paper details the design and analysis of the wishbones in double wishbone suspension system. Initially Pugh’s matrix approach is used to score the conventional materials and light weight metal matrix composites for the wishbone design. Based on the scores, an Alumina matrix composite has been found as the preferred material. Then, the designed wishbones were analysed using ANSYS finite element analysis software using AISI 1040 and metal matrix composite materials. Based on the FEA results, it has been concluded that the metal matrix composite yielded a better durability and strength than conventional metal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.