IntroductionPIK3CA is the oncogene showing the highest frequency of gain-of-function mutations in breast cancer, but the prognostic value of PIK3CA mutation status is controversial.MethodsWe investigated the prognostic significance of PIK3CA mutation status in a series of 452 patients with unilateral invasive primary breast cancer and known long-term outcome (median follow-up 10 years).ResultsPIK3CA mutations were identified in 151 tumors (33.4%). The frequency of PIK3CA mutations differed markedly according to hormone receptor (estrogen receptor alpha [ERα] and progesterone receptor [PR]) and ERBB2 status, ranging from 12.5% in the triple-negative subgroup (ER-/PR-/ERBB2-) to 41.1% in the HR+/ERBB2- subgroup. PIK3CA mutation was associated with significantly longer metastasis-free survival in the overall population (P = 0.0056), and especially in the PR-positive and ERBB2-positive subgroups. In Cox multivariate regression analysis, the prognostic significance of PIK3CA mutation status persisted only in the ERBB2-positive subgroup.ConclusionsThis study confirms the high prevalence of PIK3CA mutations in breast cancer. PIK3CA mutation is an emerging tumor marker which might become used in treatment-choosing process. The independent prognostic value of PIK3CA mutation status in ERBB2-positive breast cancer patients should be now confirmed in larger series of patients included in randomized prospective ERBB2-based clinical trials.
The aim of this study was to evaluate the expression levels of microRNAs (miRNAs) in bladder tumors in order to identify miRNAs involved in bladder carcinogenesis with potential prognostic implications. Expression levels of miRNAs were assessed by quantitative real-time RT-PCR in 11 human normal bladder and 166 bladder tumor samples (86 non-muscle-invasive bladder cancer (NMIBC) and 80 muscle-invasive bladder cancer (MIBC)). The expression level of 804 miRNAs was initially measured in a well-defined series of seven NMIBC, MIBC and normal bladder samples (screening set). The most strongly deregulated miRNAs in tumor samples compared to normal bladder tissue were then selected for RT-PCR validation in a well-characterized independent series of 152 bladder tumors (validation set), and in six bladder cancer cell lines. Expression levels of these miRNAs were tested for their association with clinical outcome. A robust group of 15 miRNAs was found to be significantly deregulated in bladder cancer. Except for two miRNAs, miR-146b and miR-9, which were specifically upregulated in MIBC, the majority of miRNAs (n 5 13) were deregulated in the same way in the two types of bladder tumors, irrespective of pathological stage : three miRNAs were upregulated (miR-200b, miR-182 and miR-138) and the other 10 miRNAs were downregulated (miR-1, miR-133a, miR-133b, miR-145, miR-143, miR-204, miR-921, miR-1281, miR-199a and miR-199b). A 3-miRNA signature (miR-9, miR-182 and miR-200b) was found to be related to MIBC tumor aggressiveness and was associated with both recurrence-free and overall survival in univariate analysis with a trend to significance in the multivariate analysis (p 5 0.05). Our results suggested a promising individual prognostic value of these new markers.
Glioblastoma multiform (GBM) are devastating brain tumors containing a fraction of multipotent stem-like cells which are highly tumorigenic. These cells are resistant to treatments and are likely to be responsible for tumor recurrence. One approach to eliminate GBM stem-like cells would be to force their terminal differentiation. During development, neurons formation is controlled by neurogenic transcription factors such as Ngn1/2 and NeuroD1. We found that in comparison with oligodendrogenic genes, the expression of these neurogenic genes is low or absent in GBM tumors and derived cultures. We thus explored the effect of overexpressing these neurogenic genes in three CD133(+) Sox2(+) GBM stem-like cell cultures and the U87 glioma line. Introduction of Ngn2 in CD133(+) cultures induced massive cell death, proliferation arrest and a drastic reduction of neurosphere formation. Similar effects were observed with NeuroD1. Importantly, Ngn2 effects were accompanied by the downregulation of Olig2, Myc, Shh and upregulation of Dcx and NeuroD1 expression. The few surviving cells adopted a typical neuronal morphology and some of them generated action potentials. These cells appeared to be produced at the expense of GFAP(+) cells which were radically reduced after differentiation with Ngn2. In vivo, Ngn2-expressing cells were unable to form orthotopic tumors. In the U87 glioma line, Ngn2 could not induce neuronal differentiation although proliferation in vitro and tumoral growth in vivo were strongly reduced. By inducing cell death, cell cycle arrest or differentiation, this work supports further exploration of neurogenic proteins to oppose GBM stem-like and non-stem-like cell growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.