An experimental study is described on the fracture toughness and micro-mechanisms associated with the initiation and propagation of cracks in metallic nickel containing marked gradients in grain size, ranging from ~30 nm to ~4 m. Specifically, cracks are grown in a gradient structured (GS) nickel with grain-size gradient ranging from the coarse macro-scale to nano-scale (CG→NG) and vice versa (NG→CG), with the measured crack-resistance R-curves compared to the corresponding behaviors in uniform nano-grained (NG) and coarse-grained (CG) materials. It is found that the gradient structures display a much-improved combination of high strength and toughness compared to uniform grain-sized materials. However, based on J-integral measurements in the gradient materials, the crack-initiation toughness is far higher for cracks grown in the direction of the coarse-to-nano grained gradient than vice versa, a result which we ascribe primarily to excessive crack-tip blunting in the coarse-grained microstructure. Both gradient structures, however, display marked rising R-curve behavior with exceptional crackgrowth toughnesses exceeding 200 MPa.m ½ .
Compact neutron imagers using double-scatter kinematic reconstruction are being designed for localization and characterization of special nuclear material. These neutron imaging systems rely on scintillators with a rapid prompt temporal response as the detection medium. As n-p elastic scattering is the primary mechanism for light generation by fast neutron interactions in organic scintillators, proton light yield data are needed for accurate assessment of scintillator performance. The proton light yield of a series of commercial fast plastic organic scintillators-EJ-200, EJ-204, and EJ-208-was measured via a double time-of-flight technique at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. Using a tunable deuteron breakup neutron source, target scintillators housed in a dual photomultiplier tube configuration, and an array of pulse-shape-discriminating observation scintillators, the fast plastic scintillator light yield was measured over a broad and continuous energy range down to proton recoil energies of approximately 50 keV. This work provides key input to event reconstruction algorithms required for utilization of these materials in emerging neutron imaging modalities.
The remarkable damage-tolerance found in natural materials is developed through functional, multiscale architectures with structural gradients and graded interfaces. [1][2][3][4][5][6] One notable example is nacre, which comprises ceramic (mineral) platelets of polycrystalline aragonite (≈95% by volume) bonded by biopolymers in a "brick-and-mortar" structure. [1,3,7] The Many natural materials present an ideal "recipe" for the development of future damage-tolerant lightweight structural materials. One notable example is the brick-and-mortar structure of nacre, found in mollusk shells, which produces high-toughness, bioinspired ceramics using polymeric mortars as a compliant phase. Theoretical modeling has predicted that use of metallic mortars could lead to even higher damage-tolerance in these materials, although it is difficult to melt-infiltrate metals into ceramic scaffolds as they cannot readily wet ceramics. To avoid this problem, an alternative ("bottomup") approach to synthesize "nacre-like" ceramics containing a small fraction of nickel mortar is developed. These materials are fabricated using nickelcoated alumina platelets that are aligned using slip-casting and rapidly sintered using spark-plasma sintering. Dewetting of the nickel mortar during sintering is prevented by using NiO-coated as well as Ni-coated platelets. As a result, a "nacre-like" alumina ceramic displaying a resistance-curve toughness up to ≈16 MPa m ½ with a flexural strength of ≈300 MPa is produced. Ceramic-Metal Composites www.advancedsciencenews.com
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.