Coating is an essential step in adjusting the surface properties of materials. Superhydrophobic coatings with contact angles greater than 150° and roll-off angles below 10° for water have been developed, based on low-energy surfaces and roughness on the nano- and micrometer scales. However, these surfaces are still wetted by organic liquids such as surfactant-based solutions, alcohols, or alkanes. Coatings that are simultaneously superhydrophobic and superoleophobic are rare. We designed an easily fabricated, transparent, and oil-rebounding superamphiphobic coating. A porous deposit of candle soot was coated with a 25-nanometer-thick silica shell. The black coating became transparent after calcination at 600°C. After silanization, the coating was superamphiphobic and remained so even after its top layer was damaged by sand impingement.
The ability of superhydrophobic surfaces to stay dry, self-clean and avoid biofouling is attractive for applications in biotechnology, medicine and heat transfer 1-10 . It requires that water droplets placed on superhydrophobic surfaces have large apparent contact angles (θ* > 150°) and low roll-off angles (θroll-off < 10°), realized with surfaces having low-surface-energy chemistry as well as micro-or nanoscale surface roughness that minimizes liquid-solid contact 11-17 . But rough surfaces where liquid contacts only a small
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.