In this technical note, we investigate the hypothesis that 'non-linearity matters in the spatial mapping of complex patterns of groundwater arsenic contamination'. The spatial mapping pertained to datadriven techniques of spatial interpolation based on sampling data at finite locations. Using the well known example of extensive groundwater contamination by arsenic in Bangladesh, we find that the use of a highly nonlinear pattern learning technique in the form of an artificial neural network (ANN) can yield more accurate results under the same set of constraints when compared to the ordinary kriging method. One ANN and a variogram model were used to represent the spatial structure of arsenic contamination for the whole country. The probability for successful detection of a well as safe or unsafe was found to be atleast 15% larger than that by kriging under the country-wide scenario. The probability of false hopes, which is a serious issue in public health monitoring was found to be significantly lower (by more than 10%) than that by kriging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.