We document the development of the first version of the U.K. Earth System Model UKESM1.The model represents a major advance on its predecessor HadGEM2-ES, with enhancements to all component models and new feedback mechanisms. These include a new core physical model with a well-resolved stratosphere; terrestrial biogeochemistry with coupled carbon and nitrogen cycles and enhanced land management; tropospheric-stratospheric chemistry allowing the holistic simulation of radiative forcing from ozone, methane, and nitrous oxide; two-moment, five-species, modal aerosol; and ocean biogeochemistry with two-way coupling to the carbon cycle and atmospheric aerosols. The complexity of coupling between the ocean, land, and atmosphere physical climate and biogeochemical cycles in UKESM1 is unprecedented for an Earth system model. We describe in detail the process by which the coupled model was developed and tuned to achieve acceptable performance in key physical and Earth system quantities and discuss the challenges involved in mitigating biases in a model with complex connections between its components. Overall, the model performs well, with a stable pre-industrial state and good agreement with observations in the latter period of its historical simulations. However, global mean surface temperature exhibits stronger-than-observed cooling from 1950 to 1970, followed by rapid warming from 1980 to 2014. Metrics from idealized simulations show a high climate sensitivity relative to previous generations of models: Equilibrium climate sensitivity is 5.4 K, transient climate response ranges from 2.68 to 2.85 K, and transient climate response to cumulative emissions is 2.49 to 2.66 K TtC −1 . Plain Language SummaryWe describe the development and behavior of UKESM1, a novel climate model that includes improved representations of processes in the atmosphere, ocean, and on land. These processes are inter-related: For example, dust is produced on the land and blown up into the atmosphere where it affects the amount of sunlight falling on Earth. Dust can also be dissolved in the ocean, where it affects marine life. This in turn changes both the amount of carbon dioxide absorbed by the ocean and the material emitted from the surface into the atmosphere, which has an affect on the formation of clouds. UKESM1 includes many processes and interactions such as these, giving it a high level of complexity. Ensuring realistic process behavior is a major challenge in the development of our model, and we have carefully tested this. UKESM1 performs well, correctly exhibiting stable results from a continuous pre-industrial simulation (used to provide a reference for future experiments) and showing good agreement
Present day tropospheric ozone and its changes between 1850 and 2100 are considered, analysing 15 global models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The multi-model mean compares well against present day observations. The seasonal cycle correlates well, except for some locations in the tropical upper troposphere. Most (75%) of the models are encompassed with a range of global mean tropospheric ozone column estimates from satellite data, although there is a suggestion of a high bias in the Northern Hemisphere and a low bias in the Southern Hemisphere. Compared to the present day multi-model mean tropospheric ozone burden of 337 Tg, the multi-model mean burden for 1850 time slice is ~ 30% lower. Future changes were modelled using emissions and climate projections from four Representative Concentration Pathways (RCPs). Compared to 2000, the relative changes for the tropospheric ozone burden in 2030 (2100) for the different RCPs are: −5% (−22%) for RCP2.6, 3% (−8%) for RCP4.5, 0% (−9%) for RCP6.0, and 5% (15%) for RCP8.5. Model agreement on the magnitude of the change is greatest for larger changes. Reductions in precursor emissions are common across the RCPs and drive ozone decreases in all but RCP8.5, where doubled methane and a larger stratospheric influx increase ozone. Models with high ozone abundances for the present day also have high ozone levels for the other time slices, but there are no models consistently predicting large or small changes. Spatial patterns of ozone changes are well correlated across most models, but are notably different for models without time evolving stratospheric ozone concentrations. A unified approach to ozone budget specifications is recommended to help future studies attribute ozone changes and inter-model differences more clearly
Abstract. Ozone holds a certain fascination in atmospheric science. It is ubiquitous in the atmosphere, central to tropospheric oxidation chemistry, yet harmful to human and ecosystem health as well as being an important greenhouse gas. It is not emitted into the atmosphere but is a by-product of the very oxidation chemistry it largely initiates. Much effort is focussed on the reduction of surface levels of ozone owing to its health impacts but recent efforts to achieve reductions in exposure at a country scale have proved difficult to achieve due to increases in background ozone at the zonal hemispheric scale. There is also a growing realisation that the role of ozone as a short-lived climate pollutant could be important in integrated air quality climate-change mitigation. This review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models. It takes the view that knowledge across the scales is important for dealing with air quality and climate change in a synergistic manner.
Abstract. The first concerted multi-model intercomparison of halogenated very short-lived substances (VSLS) has been performed, within the framework of the ongoing Atmospheric Tracer Transport Model Intercomparison Project (TransCom). Eleven global models or model variants participated (nine chemical transport models and two chemistry–climate models) by simulating the major natural bromine VSLS, bromoform (CHBr3) and dibromomethane (CH2Br2), over a 20-year period (1993–2012). Except for three model simulations, all others were driven offline by (or nudged to) reanalysed meteorology. The overarching goal of TransCom-VSLS was to provide a reconciled model estimate of the stratospheric source gas injection (SGI) of bromine from these gases, to constrain the current measurement-derived range, and to investigate inter-model differences due to emissions and transport processes. Models ran with standardised idealised chemistry, to isolate differences due to transport, and we investigated the sensitivity of results to a range of VSLS emission inventories. Models were tested in their ability to reproduce the observed seasonal and spatial distribution of VSLS at the surface, using measurements from NOAA's long-term global monitoring network, and in the tropical troposphere, using recent aircraft measurements – including high-altitude observations from the NASA Global Hawk platform. The models generally capture the observed seasonal cycle of surface CHBr3 and CH2Br2 well, with a strong model–measurement correlation (r ≥ 0.7) at most sites. In a given model, the absolute model–measurement agreement at the surface is highly sensitive to the choice of emissions. Large inter-model differences are apparent when using the same emission inventory, highlighting the challenges faced in evaluating such inventories at the global scale. Across the ensemble, most consistency is found within the tropics where most of the models (8 out of 11) achieve best agreement to surface CHBr3 observations using the lowest of the three CHBr3 emission inventories tested (similarly, 8 out of 11 models for CH2Br2). In general, the models reproduce observations of CHBr3 and CH2Br2 obtained in the tropical tropopause layer (TTL) at various locations throughout the Pacific well. Zonal variability in VSLS loading in the TTL is generally consistent among models, with CHBr3 (and to a lesser extent CH2Br2) most elevated over the tropical western Pacific during boreal winter. The models also indicate the Asian monsoon during boreal summer to be an important pathway for VSLS reaching the stratosphere, though the strength of this signal varies considerably among models. We derive an ensemble climatological mean estimate of the stratospheric bromine SGI from CHBr3 and CH2Br2 of 2.0 (1.2–2.5) ppt, ∼ 57 % larger than the best estimate from the most recent World Meteorological Organization (WMO) Ozone Assessment Report. We find no evidence for a long-term, transport-driven trend in the stratospheric SGI of bromine over the simulation period. The transport-driven interannual variability in the annual mean bromine SGI is of the order of ±5 %, with SGI exhibiting a strong positive correlation with the El Niño–Southern Oscillation (ENSO) in the eastern Pacific. Overall, our results do not show systematic differences between models specific to the choice of reanalysis meteorology, rather clear differences are seen related to differences in the implementation of transport processes in the models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.