The objective of this work was to analyse the competitive interactions between
Bromus willdenowii
Kunth. (BW = prairie grass) and a perennial C
3 grass
Dactylis glomerata L. (DG = cocksfoot) through morphogenetic traits, during pasture establishment. Four combinations of species (pure BW, pure DG, DG flanked by BW and BW flanked by DG plants), with and without winter nitrogen fertilization, were factorially arranged in a complete random block design. Data were recorded on three tiller age cohorts of the central target plant: the main stem and those that appeared 20 and 30 days after fertilization (daf). Leaf elongation rate (LER) of the older tillers was the only variable affected by nitrogen addition. Annual neighbours, which showed higher LER than perennial ones, caused a decrease in leaf lifespan in the younger tillers and a delay in the leaf appearance rate on the main stem and on 20‐daf tillers, and the tiller appearance rate. Annual neighbours controlled leaf and tiller dynamics and therefore restricted the vertical and horizontal space occupation of the target plant. These results reinforce the advantage of using a low seeding rate for the annual species to avoid negative effects on perennial grass establishment and persistence.
This experiment evaluated the effects of two grazing frequencies on net herbage accumulation, herbage nutritive value, sward structure, and herbage utilisation of a paspalum (Paspalum dilatatum) sward. The sward was grazed intermittently by dry Holstein cows over a 12-month period, in the Pampean Region in Argentina. Two grazing frequencies were used in spring and summer, Frequent (<5% of the tillers at inflorescence emergence) and Less Frequent (>75% of the tillers at inflorescence emergence). There were no differences (P > 0.05) in net herbage accumulation between grazing frequencies. The higher proportion of green leaves (P < 0.05) present in the residual herbage mass of the frequently grazed sward possibly counterbalanced the shorter rest periods employed. Frequently grazed paspalum plants showed a more prostrate herbage distribution and higher net losses of green herbage (P < 0.05) as a consequence of their lower herbage utilisation (P < 0.05).
This work analysed the regulatory structural mechanisms involved in the competitive interactions between the annual grass Bromus willdenowii Kunth. (BW = prairie grass) and the perennial C3 grass Dactylis glomerata L. (DG = orchardgrass) during pasture establishment. Four combinations of species (pure BW, pure DG, DG flanked by BW and BW flanked by DG plants), with and without winter nitrogen fertilization, were factorially arranged in a randomized complete block design. Data were recorded at two organization levels: tillers (three tiller age cohorts) and target plants. Annual neighbours caused a decrease in the number of living leaves in tillers of intermediate age of both species. This structural regulatory mechanism led to a decrease in tiller number per plant and, therefore, restricted the development of horizontal space occupation. Annual neighbours did not cause an increase in tiller size, measured as lamina length or pseudostem height, but decreased root biomass. As a consequence, annual neighbours did not lead the hierarchy in light capture, but limited species radical colonization and competitive ability for soil resources. Winter nitrogen fertilization only affected tiller size in older tillers. These findings emphasize the importance of the cultural decisions, as sowing densities and nitrogen fertilization, to optimize pasture floristic composition.
Management decisions should facilitate the dominance of C 3 perennial grasses over annuals. This study examined the effects of defoliation frequencies and nitrogen fertilization on the productivity and potential for persistence of Dactylis glomerata L. (DG cocksfoot, perennial) in multispecies swards. Treatments were randomly applied to 24 mini-swards of DG + Bromus willdenowii Kunth (BW prairie grass, annual/biennial) in a factorial design of four defoliation frequencies, based on number of leaves per tiller, by two nitrogen winter fertilization levels (N À or N + ). Regardless of fertilization, very frequent and repeated defoliations were related to decreases of about 43% of aboveground biomass and frequent defoliations with decreases of about 44% of vegetative tillers associated with horizontal space occupation and potential for persistence. Nevertheless, differences in DG aerial productivity or reserves were not detected between frequent and optimal defoliation frequencies. Combined effects of N + and optimal frequency were related to root biomass increment of about 200%, compared with frequent defoliation, associated with competitiveness and survival of DG. Optimal defoliation frequency would have ecological but not production advantages, compared with frequent defoliations. The results are discussed in terms of more objective decision-making in the management of multispecies swards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.