In our proposed empirical model, the anisotropy of the surface energy and the thickness of the surface layer of the high-entropy FeCrNiTiZrAl alloy are calculated. The thickness of the surface layer of this alloy is about 2 nm, which is an order of magnitude greater than the thickness of the surface layer of complex crystals, but is of the same order of magnitude as that of metallic glasses. The hardness and other properties of the high-entropy alloy are the same as for metallic glasses, but are 2-3 times higher than the hardness of stainless steels. The surface energy of the high-entropy FeCrNiTiZrAl alloy is about 2 J/m2, which corresponds to the surface energy of magnesium oxide and other crystals with a high melting point. However, unlike these crystals, the friction coefficients of a high-entropy alloy (~ 0.06) are much lower than that of ordinary steels (~ 0.8). We have theoretically shown that the friction coefficient is proportionally dependent on the surface energy and inversely proportional to the Gibbs energy, which significantly decreases for a high-entropy alloy, leading to low friction. The high hardness and low coefficient of friction of the high-entropy alloy facilitates the deposition of coatings from them on structural metal products, which contributes to their widespread use.
Первичные нанотрещины в стали 20Х13 возникают из-за напряженно-деформированного состояния, связанного с релаксацией его поверхности. Размер этих нанотрещин равен 1,21 нм. Через 100 нс и более они превращаются в мезотрещины размером 121 нм. При осаждении нитрида титана ионно-плазменным методом его ионы диффундируют в сталь и образуют межфазовый (переходной) слой размером около 130 нм (121 нм). Размер этого слоя экспериментально измерен на сколе турбинной лопатки на электронном микроскопе MIRA 3 фирмы TESCAN, а также используя систему Quanta 200 3D. Вверху этого слоя располагается покрытие TiN с твердостью равной H TiN ≈ 21000 МПа. Внизу этого слоя располагается сталь 20Х13 с пределом прочности σ В = 830 МПа. Полученную нами величину переходного слоя H ≈ 3000 МПа следует назвать адгезионной прочностью нитрид-титанового покрытия на турбинную лопатку из стали 20Х13. Чтобы оторвать покрытие TiN от стали 20Х13, нужно затратить работу адгезии W a = 2,620 Дж/м 2 , которая дает для напряжения в переходном слое σ а = 2260 МПа. Это напряжение в переходном слое близко к значению H ≈ 3000 МПа. Это означает, что мы предлагаем модель первичных трещин, по которой можно сделать теоретическую оценку адгезионной прочности.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.