Nonresonant cavity ringdown laser absorption spectroscopy (CRLAS) was applied for detection and characterization of airborne particulates. Sensitive detection of a variety of aerosols under ambient conditions was achieved. The method provides, for the first time, time-resolved absolute aerosol concentration, with spatial resolution (along a line). The first report on absorption spectroscopy of monodispersed aerosols (in the size range 100-200 nm) is provided, and comparisons are made with the bulk data. The results indicate the possibility of applying CRLAS for selective analysis of aerosols. A new method for estimating the aerosol refraction index is also obtained from the ringdown data.
Cavity ring-down laser absorption spectroscopy (CRLAS) was applied for the first time to detection and characterization of laser breakdown generated aerosols. The method provided time-resolved morphological information on the aerosol plume, which is of importance in laser ablation (LA) and deposition, in laser-induced breakdown spectroscopy (LIBS) analysis, and in laser ablation inductively coupled plasma (LA-ICP) methods. This method provides sensitive detection of a variety of aerosols produced under ambient conditions. The morphological investigation revealed that the aerosol density has a reproducible pattern as a function of distance from the surface, although its details depend on time, on geometrical parameters and on the surface characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.