Over the 75-year lifetime of the British Pharmacological Society there has been an enormous expansion in our understanding of how opioid drugs act on the nervous system, with much of this effort aimed at developing powerful analgesic drugs devoid of the side effects associated with morphine -the Holy Grail of opioid research. At the molecular and cellular level multiple opioid receptors have been cloned and characterised, their potential for oligomerisation determined, a large family of endogenous opioid agonists has been discovered, multiple second messengers identified and our understanding of the adaptive changes to prolonged exposure to opioid drugs (tolerance and physical dependence) enhanced. In addition, we now have greater understanding of the processes by which opioids produce the euphoria that gives rise to the intense craving for these drugs in opioid addicts. In this article, we review the historical pathway of opioid research that has led to our current state of knowledge.
The effect of gabapentin on the release of the spinal sensory neurotransmitter glutamate has been investigated in an in vitro model using a perfused thin slice preparation from the rat brainstem containing the spinal trigeminal caudal subnucleus (Sp5C) and pre-incubated with [(3)H]glutamate. Addition of excess K(+) to the perfusing solution increased the content of tritium in the perfusate. The prior addition of substance P increased this index of glutamate release in a concentration-dependent manner, with the mean maximum of around 50% increase obtained at 1-3 microM. The action of substance P to increase the evoked release of glutamate was blocked by the antagonist CP-99994, suggesting a specific involvement of the NK(1) receptor in mediating the facilitatory effect. On its own, gabapentin at up to 100 microM did not modify the baseline level of K(+)-evoked release of glutamate; however, gabapentin caused a concentration-dependent decrease of the facilitatory effect of substance P (EC(50)=6.49 microM). The R-(-)- and S-(+)-isomers of 3-isobutylgaba were then tested against the increase in K(+)-evoked release of glutamate by substance P. S-(+)-3-isobutylgaba (pregabalin) at 30 microM acted like gabapentin to reduce the substance P-mediated increase of release almost to the baseline level of K(+)-evoked release, while in contrast the R-(-)-isomer at this concentration produced no reduction, and rather a trend towards a further enhancement of the potentiating effect of substance P. In conclusion, we have found and characterized an effect of gabapentin that is of possible mechanistic relevance to the anti-hyperalgesic/allodynic actions of this compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.