The number of patients diagnosed with chronic bile duct disease is increasing and in most cases these diseases result in chronic ductular scarring, necessitating liver transplantation. The formation of ductular scaring affects liver function; however, scar-generating portal fibroblasts also provide important instructive signals to promote the proliferation and differentiation of biliary epithelial cells. Therefore, understanding whether we can reduce scar formation while maintaining a pro-regenerative microenvironment will be essential in developing treatments for biliary disease. Here, we describe how regenerating biliary epithelial cells express Wnt-Planar Cell Polarity signalling components following bile duct injury and promote the formation of ductular scars by upregulating pro-fibrogenic cytokines and positively regulating collagen-deposition. Inhibiting the production of Wnt-ligands reduces the amount of scar formed around the bile duct, without reducing the development of the pro-regenerative microenvironment required for ductular regeneration, demonstrating that scarring and regeneration can be uncoupled in adult biliary disease and regeneration.
Cholangiocarcinoma (CCA) is a relatively rare malignancy of the intra-or extra-hepatic bile ducts that is classified according to its anatomical localization as intrahepatic, perihilar or distal. Overall, CCA has a dismal prognosis due to typical presentation at an advanced irresectable stage, lack of effective non-surgical treatments, and a high rate of disease recurrence. CCA frequently arises on a background of chronic liver inflammation and cholestasis. Chronic inflammation is accompanied by enhanced cell turnover with generation of additional inflammatory stimuli, and a microenvironment rich in pro-inflammatory mediators and proliferative factors that enable accumulation of mutations, transformation and expansion of mutated cells. A recent study by Boulter et al implicates the Wnt signaling cascade in cholangiocarcinogenesis. Wnt ligands Wnt7B and Wnt10A were found to be highly overexpressed in human CCA tissue. Wnt7B protein was present throughout the tumor stroma, and often co-localized with a subset of CD68 + macrophages. To address in a direct manner whether Wnt signaling is engaged in development of CCA, Boulter et al explored the Wnt signaling pathway in an experimental model that recapitulates the multi-stage progression of human CCA. Wnt ligands found to be elevated in human CCA were also upregulated during the course of CCA development following thioacetamide treatment. Wnt10a increased during the (pre-cancerous) regenerative phase, while Wnt7b induction paralleled tumor growth. Along with upregulation of target genes, the findings demonstrate that the canonical Wnt pathway is progressively activated during cholangio-carcinogenesis. Macrophage depletion, eliminating a major source of Wnt7b, prevented activation of the canonical Wnt cascade, and resulted in reduced number and volume of tumors in this model. Moreover, specific inhibitors of the canonical Wnt pathway (ICG-001 and C-59) caused reduction of tumor area and number, in xenograft and thioacetamide models of CCA. The aggregated findings show that experimental, and presumably human CCA, is a Wnt-driven tumor. Modulation of Wnt signaling, alone or in combination with surgical
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.