Absztrakt: Bevezetés: A lepedékkel, tüszőkkel fedett, gyulladt tonsilla gyakori elváltozásnak számít a gyermekgyógyászatban. A tünet hátterében az esetek nagyobb részében vírusfertőzés (Epstein–Barr-vírus [EBV], cytomegalovirus [CMV], influenza, parainfluenza, adenovírus) áll; csak kisebb arányban baktériumok, melyek közül az A-csoportú streptococcusok által okozott fertőzés kiemelendő. A jelenlegi irányelvek alapján nem ajánlott rutinszerű, preventív antibiotikumkezelés az A-csoportú streptococcusok által okozott szövődmények megelőzésére. Célkitűzés: Célunk volt meghatározni, hogy a lepedékes tonsillitis miatt felvett gyermekek esetén jelenthet-e differenciáldiagnosztikai segítséget a laboratóriumi értékek változása a felesleges antibiotikumhasználat elkerülésében. Módszer: A vizsgálat során 133 beteg 135, exsudativ tonsillitis miatt történt megjelenésének adatait elemeztük. A betegeket két csoportba osztottuk. Az 1. csoportba kerültek azok a betegek, akiknél EBV vagy CMV kóroki szerepe volt igazolható, míg a 2. csoportba azokat a betegeket soroltuk, akiknél szerológiai módszerekkel nem volt igazolható vírusfertőzés. Eredmények: A vizsgálati eredmények alapján 2016 és 2017 között az exsudativ tonsillitisek többségénél (66/135, 48,8%) a CMV és az EBV kóroki szerepe volt igazolható szerológiai módszerrel, míg Streptococcus pyogenes jelenléte csak néhány esetben (3/65, 4,61%) volt kimutatható torokváladékból. A betegek jelentős, 92%-a a fentiek ellenére antibiotikumkezelésben részesült. Következtetés: Retrospektív felmérésünk eredményei is alátámasztották, hogy a klinikai tünetek és a fizikális status alapján nem lehetséges a kóroki tényezőt megítélni, sőt a legtöbb esetben a kvalitatív vérkép eltérései és a gyulladásos markerek – például a C-reaktív protein (CRP) – emelkedése sem jelez egyértelműen bakteriális infekciót. Ellenben a transzaminázértékek emelkedése magas pozitív prediktív értékkel utal vírusfertőzésre, azon belül is a vizsgálat tárgyát képező CMV- és EBV-infekcióra. A laborvizsgálatok ez irányú kiterjesztésével a felesleges antibiotikumhasználat jelentősen csökkenthető. Orv Hetil. 2020; 161(2): 50–55.
Background and Aims From 2019 till the present, infections induced by the novel coronavirus and its mutations have posed a new challenge for healthcare. However, comparative studies on pediatric infections throughout waves are few. During four different pandemic waves, we intended to investigate the clinical and epidemiological characteristic of the pediatric population hospitalized for severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) virus infection. Methods Between March 2020 and December 2021, we performed our retrospective research on children infected with the SARS‐CoV‐2 virus at the University of Szeged. We analyzed the data of all patients who required hospitalization due to positive results of SARS‐CoV‐2 tests (Nucleic Acid Amplification Test or rapid antigen test). Data analysis included demographic data, medical history, clinical findings, length of hospitalization, and complications, using medical records. Results In this study, data from 358 coronavirus‐infected children were analyzed. The most affected age group was children over 1 month and under 1 year (30.2%). The highest number of cases was recorded in the fourth wave (53.6%). Fever (65.6%), cough (51.4%), nasal discharge (35.3%), nausea and vomiting (31.3%), and decreased oral intake (28.9%) were the most common symptoms. The most common complications were dehydration (50.5%), pneumonia (14.9%), and bronchitis/bronchiolitis (14.5%). Based on RR values, there are considerable differences in the prevalence of the symptoms and complications between the different age groups and waves. Cox proportional hazard model analyzes showed that fever and tachypnoea had a relevant effect on days to recovery. Conclusions We found trends similar to those previously published, overall statistics. The proportion of children requiring hospitalization varied from wave to wave, with the fourth wave affecting the Hungarian child population the most. Our findings suggest that hospitalization time is unrelated to age, but that certain symptoms (fever and tachypnoea) are associated with longer hospitalization. The onset of certain symptoms may differ by age group.
Background The incidence of tonsillopharyngitis is especially prevalent in children. Despite the fact that viruses cause the majority of infections, antibiotics are frequently used as a treatment, contrary to international guidelines. This is not only an inappropriate method of treatment for viral infections, but it also significantly contributes to the emergence of antibiotic-resistant strains. In this study, EBV and CMV-related tonsillopharyngitis were distinguished from other pathogens by using machine learning techniques to construct a classification tree based on clinical characteristics. Materials and methods In 2016 and 2017, we assessed information regarding 242 children with tonsillopharyngitis. Patients were categorized according to whether acute cytomegalovirus or Epstein-Barr virus infections were confirmed (n = 91) or not (n = 151). Based on symptoms and blood test parameters, we constructed decision trees to discriminate the two groups. The classification efficiency of the model was characterized by its sensitivity, specificity, positive predictive value, and negative predictive value. Fisher’s exact and Welch’s tests were used to perform univariable statistical analyses. Results The best decision tree distinguished EBV/CMV infection from non-EBV/CMV group with 83.33% positive predictive value, 88.90% sensitivity and 90.30% specificity. GPT (U/l) was found to be the most discriminatory variable (p < 0.0001). Using the model, unnecessary antibiotic treatment could be reduced by 66.66% (p = 0.0002). Discussion Our classification model can be used as a diagnostic decision support tool to distinguish EBC/CMV infection from non EBV/CMV tonsillopharyngitis, thereby significantly reducing the overuse of antibiotics. It is hoped that the model may become a tool worth considering in routine clinical practice and may be developed to differentiate between viral and bacterial infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.