This paper is a sequel to the 1998 review paper “Scientific status of the Dense Plasma Focus” with 16 authors belonging to 16 nations, whose initiative led to the establishment of the International Center for Dense Magnetized Plasmas (ICDMP) in the year 2000. Its focus is on understanding the principal defining characteristic features of the plasma focus in the light of the developments that have taken place in the last 20 years, in terms of new facilities, diagnostics, models, and insights. Although it is too soon to proclaim with certainty what the plasma focus phenomenon is, the results available to date conclusively indicate what it is demonstrably not. The review looks at the experimental data, cross-correlated across multiple diagnostics and multiple devices, to delineate the contours of an emerging narrative that is fascinatingly different from the standard narrative, which has guided the consensus in the plasma focus community for several decades, without invalidating it. It raises a question mark over the Fundamental Premise of Controlled Fusion Research, namely, that any fusion reaction having the character of a beam-target process must necessarily be more inefficient than a thermonuclear process with a confined thermal plasma at a suitably high temperature. Open questions that need attention of researchers are highlighted. A future course of action is suggested that individual plasma focus laboratories could adopt in order to positively influence the future growth of research in this field, to the general benefit of not only the controlled fusion research community but also the world at large.
The anisotropies of neutron and high energy deuteron emissions from the NX2 plasma focus device ͓M. V. Roshan et al., Phys. Lett. A 373, 851 ͑2009͔͒ are studied. The nuclear activation of graphite targets is used to measure the fluences of high energy deuterons in the axial and radial directions. Two bismuth germanate scintillation detectors connected to multichannel analyzer systems are used for the detection of 511 keV gamma rays resulting from positron annihilation in the two targets. In addition, fast neutron activation detectors are employed to measure the axial and radial fluences of fusion neutrons. These detection systems are calibrated using the simulation code MCNPX ͓L. S. Waters et al., AIP Conf. Proc. 896, 81 ͑2007͔͒. Two distinct regimes of neutron and deuteron anisotropies are observed for the NX2 device. For deuterium gas pressures below 10 mbar, the neutron anisotropy increases with increasing pressure, while the overall neutron yield remains low. For gas pressures of 10-14 mbar, the neutron anisotropy is essentially constant, while, with increasing pressure, the neutron yield rises rapidly and the deuteron anisotropy falls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.