The development of a large-area RF source for negative hydrogen ions, an official EFDA task agreement, is aiming at demonstrating ITER-relevant ion source parameters. This implies a current density of 20 mA/cm 2 accelerated Dions at a source filling pressure of ≤ 0.3 Pa and an electron to ion ratio of ≤ 1 from a PINI-size extraction area for pulse lengths of up to 1 hour. The work is progressing along three lines in parallel: (i) optimisation of current densities at low pressure and electron/ion ratio, utilising small extraction areas (< 100 cm 2) and short pulses (< 10 s); (ii); investigation of extended extraction areas (< 300 cm 2) and pulse lengths of up to 3600 s; (iii) investigation of a size-scaling on a half-size ITER plasma source. Three different testbeds are being used to carry out those investigations in parallel. An extensive diagnostic and modelling programme accompanies the activities. The paper contains the recent achievements and the status of preparations in those four areas of development
The ITER neutral beam (NB) injectors are the first injectors that will have to operate in a hostile radiation environment and they will become highly radioactive due to the neutron flux from ITER. The injectors will use a single large ion source and accelerator that will produce 40 A 1 MeV Dbeams for pulse lengths of up to 3600 s. Significant changes have been made to the ITER heating NB injector (HNB) over the past 4 years. The main changes are: o Modifications to allow installation and maintenance of the beamline components with an overhead crane. o The RF driven negative ion source developed by IPP Garching has replaced the filamented ion source from JAEA, Naka as the reference design. o The ion source and extractor power supplies will be located in an air insulated high voltage (-1 MV) deck located outside the tokamak building instead of inside an SF 6 insulated HV deck located above the injector. The development of the ITER accelerators and ion sources has been carried out on relatively low powered test stands, making impossible the full demonstration of the ITER requirements. Padua Research on Injectors with Megavolt Acceleration (PRIMA, ex-NBTF) will be built to allow the R&D necessary to finalise the development of the full power system
The ITER neutral beam injectors are the first injectors to be designed to operate under conditions and constraints similar to those that will be encountered with a fusion reactor. The injectors will use a single large ion source and accelerator that will produce 40 A D(-) 1 MeV beams for pulse lengths of up to 3600 s. The accelerated ion beams will be neutralized in a gas (D(2)) neutralizer which is subdivided into four vertical channels to reduce the gas flow into the injectors that is needed to produce optimum target for neutralization. These injectors will have to operate in a hostile radiation environment and they will become highly radioactive due to the neutron flux from ITER. The design has been modified recently to have a rectangular vacuum vessel with a removable lid that allows vertical access to, and maintenance of, the beamline components, the incorporation of an absolute all metal valve at the exit of the injector, the choice of a rf driven ion source as the reference design of ion source, and to have a high voltage deck incorporating the various auxiliary power supplies in air rather that under high pressure SF(6). A major development is that it has been agreed that a Neutral Beam Test Facility (NBTF) will be set up at Padua, Italy. The NBTF will consist of two test beds: one of which will be capable of operating a complete injector at full performance. The second will be an ion source test bed, which will be used for the development and testing, to full performance, of the large negative ion source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.