The study of phase-transition dynamics in solids beyond a time-averaged kinetic description requires direct measurement of the changes in the atomic configuration along the physical pathways leading to the new phase. The timescale of interest is in the range 10(-14) to 10(-12) s. Until recently, only optical techniques were capable of providing adequate time resolution, albeit with indirect sensitivity to structural arrangement. Ultrafast laser-induced changes of long-range order have recently been directly established for some materials using time-resolved X-ray diffraction. However, the measurement of the atomic displacements within the unit cell, as well as their relationship with the stability limit of a structural phase, has to date remained obscure. Here we report time-resolved X-ray diffraction measurements of the coherent atomic displacement of the lattice atoms in photoexcited bismuth close to a phase transition. Excitation of large-amplitude coherent optical phonons gives rise to a periodic modulation of the X-ray diffraction efficiency. Stronger excitation corresponding to atomic displacements exceeding 10 per cent of the nearest-neighbour distance-near the Lindemann limit-leads to a subsequent loss of long-range order, which is most probably due to melting of the material.
Time-resolved x-ray diffraction with ultrashort ( approximately 300 fs), multi-keV x-ray pulses has been used to study the femtosecond laser-induced solid-to-liquid phase transition in a thin crystalline layer of germanium. Nonthermal melting is observed to take place within 300-500 fs. Following ultrafast melting we observe strong acoustic perturbations evolving on a picosecond time scale.
We apply time-resolved x-ray diffraction using ultrashort x-ray pulses from a laser-produced plasma to probe the picosecond acoustic response of a thin laser-heated gold film. Measurements of the temporal changes in the angular distribution of diffracted x-rays provide direct quantitative information on the transient evolution of lattice strain. This allows to disentangle electronic and thermal pressure contributions driving lattice expansion after impulsive laser excitation. The electron-lattice energy equilibration time τE=(5±0.3) ps as well as the electronic Grüneisen parameter γe=(1.48±0.3) have been determined.
Experiments and computer simulations on the generation of high order harmonics from steep plasma gradients using intense femtosecond laser pulses are presented. Qualitative changes in the harmonic emission take place when the intensities are increased above 10(19) W/cm2 and/or the plasma scale length is varied. Good agreement between experimental and calculated spectra makes it possible to clearly distinguish between nonrelativistic and relativistic mechanisms of harmonic generation.
Ultrafast magnetization dynamics in metallic heterostructures consists of a combination of local demagnetization in the ferromagnetic constituent and spin-dependent transport contributions within and in between the constituents. Separation of these local and non-local contributions is essential to obtain microscopic understanding and for potential applications of the underlying microscopic processes. By comparing the ultrafast changes of the polarization rotation and ellipticity in the magneto-optical Kerr effect (MOKE) we observe a time-dependent magnetization profile M (z, t) in Co/Cu(001) films by exploiting the effective depth sensitivity of the method. By analyzing the spatio-temporal correlation of these profiles we find that on time scales before hot electron thermalization (< 100 fs) the transient magnetization of Co films is governed by spin-dependent transport effects, while after hot electron thermalization (> 200 fs) local spin-flip processes dominate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.