The tetragonal-orthorhombic structural phase transition of oxygen atoms in the basal plane of YBa_{2}Cu_{3}O_{6+δ} high-T_{C} cuprate superconductors is studied numerically. By mapping the system onto the asymmetric next-nearest-neighbor Ising model, we characterize this phase transition. Results indicate the degrees of critical behavior. We show that this phase transition occurs at the temperature T_{C}≃0.148eV in the thermodynamic limit. By analyzing the critical exponents, it is found that this universality class displays some common features, with the two-dimensional three-state Potts model universality class, although the possibility of other universality classes cannot be ruled out. Conformal invariance at T=T_{c} is investigated using the Schramm-Loewner evolution (SLE) technique, and it is found that the SLE diffusivity parameter for this system is 3.34±0.01.
By employing quantum renormalization group (QRG) method, we investigate quantum phase transitions (QPT) in the Ising transverse field (ITF) model and in the XXZ Heisenberg model, with and without Dzyaloshinskii Moriya (DM) interaction, on a periodic chain of N lattice sites. We adopt a new approach called spin squeezing as an indicator of QPT. Spin squeezing, through analytical expression of a spin squeezing parameter, is calculated after each step of QRG. As the scale of the system becomes larger, (after many QRG steps), the ground state (GS) spin squeezing parameters show an abrupt change at a quantum critical point (QCP). Moreover, in all of the studied models, the first derivative of the spin squeezing parameter with respect to the control parameter is discontinuous, which is a signature of QPT. The spin squeezing parameters develop their saturated values after enough QRG iterations. The divergence exponent of the first derivative of the spin squeezing parameter in the near vicinity of the QCP is associated with the critical exponent of the correlation length.
Scharf begrenzt: Eine räumlich hochaufgelöste Transgenexpression in zwei biologischen Anwendungen belegt das Potenzial einer Methode zur photoaktivierten Genexpression auf Grundlage eines photoempfindlichen Doxycyclinanalogons. Die Bestrahlung einer Hälfte eines transgenen Tabakblattes erzeugt eine scharf begrenzte Reportergenexpression im photoaktivierten Gewebe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.