This study investigated the effects of, and interactions between, dietary grain source and marginal changes in alfalfa hay (AH) particle size (PS) on digestive processes of dairy cows. A total of eight Holstein dairy cows (175 days in milk) were allocated in a replicated 4 3 4 Latin square design with four 21-day periods. The experiment was a 2 3 2 factorial arrangement with two levels of theoretical PS of AH (fine 5 15 mm or long 5 30 mm) each combined with two different sources of cereal grains (barley grain alone or barley plus corn grain in a 50 : 50 ratio). Results showed that cows consuming diets supplemented with corn had greater dry matter and nutrient intakes (P , 0.01), independent of forage PS. In addition, the apparent digestibility of fiber fractions was greater for diets supplemented with corn (P 5 0.01). The feeding of barley grain-based diets was associated with greater apparent digestibility of non-fiber carbohydrates, and this variable was even greater when long AH was fed (P 5 0.04). Moreover, the feeding of long AH resulted in longer time spent eating (P 5 0.03) and higher pH (P , 0.01), as well as a tendency for higher acetate-to-propionate ratio in the rumen fluid (P 5 0.06) at 3 h post feeding. In conclusion, the results indicated that the marginal increase of PS of AH may prolong eating time and improve rumen fermentation, particularly in diets based on barley grain. Partial substitution of barley grain by corn can improve feed intake and fiber digestibility in mid-lactation dairy cows.Keywords: physically effective NDF, hay particle size, barley, corn ImplicationsThis study tested the hypothesis that grain fermentability and particle size (PS) of alfalfa hay have the potential to modify rumen conditions, digestion and performance of mid-lactation dairy cows. Indeed, the results showed an improved rumen environment and nutrient digestibility in cows fed a diet containing corn grain and long forage PS, respectively.
Two experiments were carried out to test the effects of alfalfa particle size and functional specific gravity (FSG) on chewing activity, digestibility, rumen kinetics, and production of lactating dairy cows fed corn silage based rations. In experiment 1, water-holding capacity (WHC), insoluble dry matter, hydration rate, and FSG changes were determined in alfalfa hay (varying in particle size) and corn silage. Reduction of particle size increased bulk density, FSG, and the rate of hydration, and decreased WHC of alfalfa. In experiment 2, 9 midlactation Holstein dairy cows fed total mixed rations containing 3 sizes of alfalfa hay (with geometric mean 7.83, 4.04, and 1.14 mm) were used in a replicated 3 x 3 Latin square design. The diets contained 20, 20, 35, 7, 7.5, 10, 0.3, 0.1, and 0.1% of DM alfalfa, corn silage, barley, soybean meal, beet pulp, wheat bran, dicalcium phosphate, vitamin premix, and salt, respectively. The geometric means (GM) of rations were 3.34, 2.47, and 1.66 mm in long, medium, and fine alfalfa treatments, respectively. Reduction of particle size increased daily NDF intake (kg), but decreased the proportion of physically effective factor (pef) and physically effective NDF (peNDF) in the ingested rations. Reduction of particle size increased the FSG of rations and intake of DM but reduced digestibility of NDF and ash. Reduction of particle size decreased ruminal mean retention time (RMRT), but increased the ruminal particulate passage rate. Milk and FCM yield were not affected by treatments. The rumen pH, total chewing activity, rumination, eating time, and milk fat were reduced as particle size decreased, but milk protein increased. This study showed that reduction of forage particle size increased bulk density, FSG, and hydration rate of alfalfa and was the most influential factor affecting DMI, milk composition, and chewing behavior. Reduction of forage particle size had minimal impact on digestibility and milk production.
To investigate the effects of different sources of carbohydrates on intake, digestibility, chewing, and performance, nine lactating Holstein dairy cows (day in milk= 100±21 d; body weight=645.7 ± 26.5 kg) were allotted to a 3 × 3 Latin square design at three 23-d periods. The three treatments included 34.91% (B), 18.87% (BC), and 18.86% (BB) barley that in treatment B was partially replaced with only corn or corn plus beet pulp in treatments BC and BB, respectively. The concentration of starch and neutral detergent soluble carbohydrate varied (22.2, 20.2, and 14.5; 13.6, 15.9, and 20.1% of DM in treatments B, BC, and BB, respectively). Cows in treatment BB showed a higher DMI and improved digestibility of DM, NDF, and EE compared with treatments B or BC. Ruminal pH was higher in cows fed on BB (6.83) compared with those that received B or BC treatments (6.62 and 6.73, respectively). A lower proportion of propionate accompanied the higher pH in the BB group; however, a greater proportion of acetate and acetate: propionate ratio was observed compared with cows fed either on the B or BC diet. Moreover, cows fed on the BB diet showed the lowest ruminal passage rate and longest ruminal and total retention time. Eating time did not differ among treatments, rumination time was greater among cows fed on the BB diet compared with the others, whereas total chewing activity was greater than those fed on BC, but similar to those fed on B. The treatments showed no effect on milk yield. Partially replacing barley with corn or beet pulp resulted in an increase in milk fat and a lower protein concentration. Changing dietary NFC with that of a different degradability thus altered intake, chewing activity, ruminal environment, retention time or passage rate, and lactation performance. The results of this study showed that beet pulp with a higher NDF and a detergent-soluble carbohydrate or pectin established a more consistent ruminal mat than barley and corn, thus resulting in higher mean retention time and chewing activity, whereas no changes in 3.5% FCM and milk fat were observed.
Little information is available regarding the calcium (Ca) dynamics and how its concentration is influenced following the Ca treatment (injection or bolus) after calving in dairy cows. To evaluate the short- and long-term effects of different sources of Ca supplement to animals fed anionic diets during the pre-partum period, 36 multiparous Holstein cows were randomly assigned to 1 of 3 treatments: (1) control group without Ca supplement (CON); (2) subcutaneous injection of 500 ml of 40% w/v Ca borogluconate immediately post-calving (SUB) and (3) oral supplement of Ca bolus containing 45 g Ca immediately and 24 h post-calving (BOL). Serum concentrations of Ca, P and Mg were measured. Serum concentration of Ca was affected by treatments at 48 h of post-calving (P < 0.01). The mean Ca at 6 h was greater in SUB compared to CON group (2.34 v. 2.01 mmol/l; P < 0.002). The lowest Ca concentration at 12 h was related to CON cows compared with BOL and SUB cows (1.90, 2.16 and 2.14 mmol/l, respectively; P < 0.02); a similar trend was observed 24 h post-calving (P < 0.02). Serum concentrations of P and Mg were not influenced by treatments. Yield of milk, milk protein and fat-corrected milk were lowest (P < 0.05) in SUB cows within 3 weeks of lactation in comparison with CON and BOL cows. However, milk yield and milk composition did not show any difference among treatments throughout the first 3 months post-calving. In general, under conditions of this experiment, Ca supplements to fresh cows as an oral bolus are recommended in comparison with subcutaneous injection.
Two experiments were carried out to determine ruminal degradability of sesame meal (SSM) and its effects on intake, digestibility, rumen parameters, chewing activity, and lamb performance when it replaced soybean meal (SBM). Degradability of dry matter (DM) and crude protein (CP) were determined with the nylon bag technique using three fistulated Zel ewes. The quickly and potentially degradable DM of SSM was lower, but their degradation rates of DM were similar. The quickly degradable protein in the SSM was greater, but the slowly degradable protein of SSM was lower. Potential degradable protein of SBM was greater. The degradation rate of protein was greater in the SSM. Thirty Zel lambs were assigned to five treatments, namely 1) control diet that contained SBM, and 2), 3), 4) and 5) diets that contained 25, 50, 75, and 100% DM of SSM partially or entirely replacing SBM and part of barley grain. There was no difference in the intakes of DM, CP, ether extract (EE), and non-fibre carbohydrate (NFC) among treatments, but neutral detergent fibre (NDF) intake increased when the SSM inclusion rate was increased. Digestibility of DM and EE, passage rate, and total mean retention time differed, but the digestibility of NDF, CP, and NFC, rumen liquid pH and NH 3 -N, passage rate, rumen retention time, eating time, rumination, total chewing activity, DM intake, daily gain, feed conversation ratio, carcass yield and characteristics were not different between treatments. Replacing the SBM with SSM in lamb, improved intake, digestibility, and rumen condition, without reduction in performance and carcass composition. ______________________________________________________________________________________
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.