We present the design of a positron emission tomograph (PET) with flexible geometry dedicated to in vivo studies of small animals (TierPET). The scanner uses two pairs of detectors. Each detector consists of 400 small individual yttrium aluminum perovskite (YAP) scintillator crystals of dimensions 2 x 2 x 15 mm3, optically isolated and glued together, which are coupled to position-sensitive photomultiplier tubes (PSPMT's). The detector modules can be moved in a radial direction so that the detector-to-detector spacing can be varied. Special hardware has been built for coincidence detection, position detection, and real-time data acquisition, which is performed by a PC. The single-event data are transferred to workstations where the radioactivity distribution is reconstructed. The dimensions of the crystals and the detector layout are the result of extensive simulations which are described in this report, taking into account sensitivity, spatial resolution and additional parameters like parallax error or scatter effects. For the three-dimensional (3-D) reconstruction a genuine 3-D expectation-maximization (EM)-algorithm which can include the characteristics of the detector system has been implemented. The reconstruction software is flexible and matches the different detector configurations. The main advantage of the proposed animal PET scanner is its high flexibility, allowing the realization of various detector-system configurations. By changing the detector-to-detector spacing, the system is capable of either providing good spatial resolution or high sensitivity for dynamic studies of pharmacokinetics.
We will present first results of the KFA Tier-PET, a positron emission tomograph with flexible geometry dedicated to in vivo studies of small animals. The flexible geometry allows us to change between measurements with high spatial resolution and measurements with increased sensitivity at the cost of resolution. The detectors consist of yttrium aluminium perovskit scintillator arrays which are glued together from 20 x 20 optically isolated crystals, coupled to position sensitive photomultiplier tubes.The fundamental design features concerning crystal dimensions and detector arrangement have been simulated. Based on this data, the definite dimensional outline of the crystals was determined. The YAP:Ce matrix in combination with a position sensitive photomultiplier leads to a detector block with a high spatial resolution. In first measurements a system sensitivity of 1.8 kcps/pCi/ml has been evaluated for a detector-to-detector distance of 16 cm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.