Bioprinting is a powerful technique that allows precise and controlled 3D deposition of biomaterials in a predesigned, customizable, and reproducible manner. Cell-laden hydrogel ("bioink") bioprinting is especially advantageous for tissue engineering applications as multiple cells and biomaterial compositions can be selectively dispensed to create spatially well-defined architectures. Despite this promise, few hydrogel systems are easily available and suitable as bioinks, with even fewer systems allowing for molecular design of mechanical and biological properties. In this study, we report the development of a norbornene functionalized alginate system as a cell-laden bioink for extrusion-based bioprinting, with a rapid UV-induced thiol-ene cross-linking mechanism that avoids acrylate kinetic chain formation. The mechanical and swelling properties of the hydrogels are tunable by varying the concentration, length, and structure of dithiol PEG cross-linkers and can be further modified by postprinting secondary cross-linking with divalent ions such as calcium. The low concentrations of alginate needed (<2 wt %), coupled with their rapid in situ gelation, allow both the maintenance of high cell viability and the ability to fabricate large multilayer or multibioink constructs with identical bioprinting conditions. The modularity of this bioink platform design enables not only the rational design of materials properties but also the gel's biofunctionality (as shown via RGD attachment) for the expected tissue-engineering application. This modularity enables the creation of multizonal and multicellular constructs utilizing a chemically similar bioink platform. Such tailorable bioink platforms will enable increased complexity in 3D bioprinted constructs.
Bifunctional 2-ureido-4[1H]-pyrimidinone (UPy) derivatives can form small cyclic oligomers as well as long supramolecular polymers in chloroform solutions using the quadruple hydrogen-bonding motif. Ring-chain equilibria of a set of supramolecular monomers containing methyl-substituted alkyl linkers between the hydrogen-bonding UPy moieties were investigated by 1 H NMR spectroscopy and viscometry. The data were characterized in terms of critical concentration (CC, denoting the onset of polymerization) and equilibrium cyclic dimer concentration (EDC, representing preorganization of the monomer toward selective formation of cyclic dimer). Methyl substituents in the monomer were found to promote conformations favorable for cyclic dimerization, leading to an increase in both the EDC and the CC with respect to unsubstituted monomer. Furthermore, we observed an odd-even effect in the CC and EDC with increasing length of the linker between the hydrogen-bonding units. The combined results allow tuning of the critical concentration over a broad range and offer detailed information on the correlation between monomer structure, conformation, and polymerizability which may provide new insights for the study and design of other ring-chain equilibria or helix-random coil transitions.
Homochiral hydrogen-bonded cyclic assemblies are formed in dilute solutions of racemic supramolecular polymers based on the quadruple hydrogen bonding 2-ureido-4[1H]-pyrimidinone unit, as observed by 1H NMR and SEC experiments. Preorganization of the monomers and the combined binding strength of the eight hydrogen bonds result in a very high stability of the cyclic aggregates with pronounced selectivity between homochiral and heterochiral cyclic species, usually only observed in crystalline or liquid crystalline phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.