Recent studies have confirmed that the multichannel Gabor decomposition represents an excellent tool for image segmentation and boundary detection. Unfortunately, this approach when used for unsupervised image analysis tasks imposes excessive storage requirements due to the nonorthogonality of the basis functions and is computationally highly demanding. In this correspondence, we propose a novel method for efficient image analysis that uses tuned matched Gabor filters. The algorithmic determination of the parameters of the Gabor filters is based on the analysis of spectral feature contrasts obtained from iterative computation of pyramidal Gabor transforms with progressive dyadic decrease of elementary cell sizes. The method requires no a priori knowledge of the analyzed image so that the analysis is unsupervised. Computer simulations applied to different classes of textures illustrate the matching property of the tuned Gabor filters derived using our determination algorithm. Also, their capability to extract significant image information and thus enable an easy and efficient low-level image analysis will be demonstrated.
This paper presents an unsupervised texture segmentation algorithm based on feature extraction using multichannel Gabor filtering. It is shown that feature contrast, a criterion derived for Gabor filter parameter selection, is well suited for feature coordinate weighting in order to reduce the feature space dimension. The central idea of the proposed segmentation algorithm is to decompose the actual segmented image into disjunct areas called scrap images and use them after lowpass filtering as additional features for repeated k-means clustering and minimum distance classification. This yields a classification of texture regions with an improved degree of homogeneity while preserving precise texture boundaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.