Along with economic dispatch, emission dispatch has become a key problem under market conditions. Thus, the combination of the above problems in one problem called economic emission dispatch (EED) problem became inevitable. However, due to the dynamic nature of today’s network loads, it is required to schedule the thermal unit outputs in real-time according to the variation of power demands during a certain time period. Within this context, this paper presents an elitist technique, the second version of the non-dominated sorting genetic algorithm (NSAGII) for solving the dynamic economic emission dispatch (DEED) problem. Several equality and inequality constraints, such as valve point loading effects, ramp rate limits and prohibited operating zones (POZ), are taken into account. Therefore, the DEED problem is considered as a non-convex optimization problem with multiple local minima with higher-order non-linearities and discontinuities. A fuzzy-based membership function value assignment method is suggested to provide the best compromise solution from the Pareto front. The effectiveness of the proposed approach is verified on the standard power system with ten thermal units.
Appropriate modeling and accurate parameter identification of solar cells are crucial in the optimization of photovoltaic (PV) systems. The single-diode model (SDM), consisting of an ideal current source, an ideal diode, a shunt resistor and a series resistor, is widely used to simulate the behavior of PV cells/panels. In this article, a hybrid approach for identification of solar cell SDM parameters is presented. This approach uses the inverse of the slope of the I-V curve under short-circuit and open-circuit conditions and combines numerical and analytical solutions. Indeed, knowing that numerical methods require appropriate initial values, the main idea of the proposed approach is to provide these solutions by analytical methods. The comparison of obtained results with experimental ones, based on manufacturer’s datasheet, proves that the algorithm thus obtained requires less information from the manufacturer and improves significantly the parameter identification accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.