We present measurements of nu(mu) disappearance in K2K, the KEK to Kamioka long-baseline neutrino oscillation experiment. One-hundred and twelve beam-originated neutrino events are observed in the fiducial volume of Super-Kamiokande with an expectation of 158.1(-8.6)(+9.2) events without oscillation. A distortion of the energy spectrum is also seen in 58 single-ring muonlike events with reconstructed energies. The probability that the observations are explained by the expectation for no neutrino oscillation is 0.0015% (4.3 sigma). In a two-flavor oscillation scenario, the allowed Delta m(2) region at sin(2)2 theta=1 is between 1.9 and 3.5x10(-3) eV(2) at the 90% C.L. with a best-fit value of 2.8x10(-3) eV(2)
We present results for nu(mu) oscillation in the KEK to Kamioka (K2K) long-baseline neutrino oscillation experiment. K2K uses an accelerator-produced nu(mu) beam with a mean energy of 1.3 GeV directed at the Super-Kamiokande detector. We observed the energy-dependent disappearance of nu(mu), which we presume have oscillated to nu(tau). The probability that we would observe these results if there is no neutrino oscillation is 0.0050% (4.0 sigma).
The weak nucleon axial-vector form factor for quasielastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12 000 events are analyzed, of which half are charged-current quasielastic interactions nu(mu)n ->mu(-)p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial-vector mass M-A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M-A=1.20 +/- 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions
Single charged pion production in charged-current muon neutrino interactions with carbon is studied using data collected in the K2K long-baseline neutrino experiment. The mean energy of the incident muon neutrinos is 1.3 GeV. The data used in this analysis are mainly from a fully active scintillator detector, SciBar. The cross section for single þ production in the resonance region (W < 2 GeV=c 2 ) relative to the charged-current quasielastic cross section is found to be 0:734 þ0:140 À0:153 . The energy-dependent cross section ratio is also measured. The results are consistent with a previous experiment and the prediction of our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.