We present measurements of nu(mu) disappearance in K2K, the KEK to Kamioka long-baseline neutrino oscillation experiment. One-hundred and twelve beam-originated neutrino events are observed in the fiducial volume of Super-Kamiokande with an expectation of 158.1(-8.6)(+9.2) events without oscillation. A distortion of the energy spectrum is also seen in 58 single-ring muonlike events with reconstructed energies. The probability that the observations are explained by the expectation for no neutrino oscillation is 0.0015% (4.3 sigma). In a two-flavor oscillation scenario, the allowed Delta m(2) region at sin(2)2 theta=1 is between 1.9 and 3.5x10(-3) eV(2) at the 90% C.L. with a best-fit value of 2.8x10(-3) eV(2)
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
The blazar Mrk 501 was observed at energies above 0.10 TeV with the MAGIC Telescope from 2005 May through July. The high sensitivity of the instrument enabled the determination of the flux and spectrum of the source on a night-by-night basis. Throughout our observational campaign, the flux from Mrk 501 was found to vary by an order of magnitude. Intranight flux variability with flux-doubling times down to 2 minutes was observed during the two most active nights, namely, June 30 and July 9. These are the fastest flux variations ever observed in Mrk 501. The similar to 20 minute long flare of July 9 showed an indication of a 4 +/- 1 minute time delay between the peaks of F(< 0.25 TeV) and F(> 1.2 TeV), which may indicate a progressive acceleration of electrons in the emitting plasma blob. The flux variability was quantified for several energy ranges and found to increase with the energy of the gamma-ray photons. The spectra hardened significantly with increasing flux, and during the two most active nights, a spectral peak was clearly detected at 0.43 +/- 0.06 and 0.25 +/- 0.07 TeV, respectively, for June 30 and July 9. There is no evidence of such a spectral feature for the other nights at energies down to 0.10 TeV, thus suggesting that the spectral peak is correlated with the source luminosity. These observed characteristics could be accommodated in a synchrotron self-Compton framework in which the increase in gamma-ray flux is produced by a freshly injected ( high energy) electron population
The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. ?? 2013 Elsevier B.V. All rights reserved
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.