In order to estimate the impact on energy production and environment of tidal turbines placed in or near hydraulic structures like discharge sluices or storm surge barriers, a Computational Fluid Dynamics (CFD) study has been carried out on the relation between (head) loss induced by the turbines and their gross power production.
CFD computations have been performed for Tocardo T2 turbines, using STAR-CCM+.
Simulations of a single turbine in free flow conditions compare favorably with results of Blade Element Momentum (BEM) computations, in terms of torque and thrust. This BEM method model had been previously validated against both CFD data and field measurements.
Then, a series of tests has been performed in a “virtual tow tank”, including the effect of the free surface and the blockage by side and bottom walls.
These computations provide a base for a first estimate of the effect of turbines on the discharge capacity of a generic structure. This is considered to be the first step in a more general approach in which ultimately the effect of tidal turbines in the Eastern Scheldt Storm Surge Barrier will be assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.