By combining theory and experiments, we demonstrate that dipolar quantum gases of both 166 Er and 164 Dy support a state with supersolid properties, where a spontaneous density modulation and a global phase coherence coexist. This paradoxical state occurs in a well defined parameter range, separating the phases of a regular Bose-Einstein condensate and of an insulating droplet array, and is rooted in the roton mode softening, on the one side, and in the stabilization driven by quantum fluctuations, on the other side. Here, we identify the parameter regime for each of the three phases. In the experiment, we rely on a detailed analysis of the interference patterns resulting from the free expansion of the gas, quantifying both its density modulation and its global phase coherence. Reaching the phases via a slow interaction tuning, starting from a stable condensate, we observe that 166 Er and 164 Dy exhibit a striking difference in the lifetime of the supersolid properties, due to the different atom loss rates in the two systems. Indeed, while in 166 Er the supersolid behavior only survives a few tens of milliseconds, we observe coherent density modulations for more than 150 ms in 164 Dy. Building on this long lifetime, we demonstrate an alternative path to reach the supersolid regime, relying solely on evaporative cooling starting from a thermal gas. arXiv:1903.04375v1 [cond-mat.quant-gas]
We prepare a superposition of two motional states by addressing lithium atoms immersed in a Bose-Einstein condensate of sodium with a species-selective potential. The evolution of the superposition state is characterized by the populations of the constituent states as well as their coherence. The latter we extract employing a novel scheme analogous to the spin-echo technique. Comparing the results directly to measurements on freely evolving fermions allows us to isolate the decoherence effects induced by the bath. In our system, the decoherence time is close to the maximal possible value since the decoherence is dominated by population relaxation processes. The measured data are in good agreement with a theoretical model based on Fermi's golden rule.
We have studied magnetic Feshbach resonances in an ultracold sample of Na prepared in the absolute hyperfine ground state. We report on the observation of three s-, eight d-, and three g-wave Feshbach resonances, including a more precise determination of two known s-wave resonances, and one s-wave resonance at a magnetic field exceeding 200 mT. Using a coupled-channels calculation we have improved the sodium ground-state potentials by taking into account these new experimental data and derived values for the scattering lengths. In addition, a description of the molecular states leading to the Feshbach resonances in terms of the asymptotic-bound-state model is presented.
We report on the first realization of heteronuclear dipolar quantum mixtures of highly magnetic erbium and dysprosium atoms. With a versatile experimental setup, we demonstrate binary Bose-Einstein condensation in five different Er-Dy isotope combinations, as well as one Er-Dy Bose-Fermi mixture. Finally, we present first studies of the interspecies interaction between the two species for one mixture. arXiv:1807.07555v1 [cond-mat.quant-gas]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.