The effects of prickly pear pectin on plasma LDL metabolism were investigated by feeding guinea pigs either a diet containing 15 g/100 g lard and 0.25 g/100 g cholesterol (LC diet) or the LC diet in which cellulose was partially replaced (2.5 g/100 g) by prickly pear pectin (LC-P diet). The LC-P diet lowered plasma LDL cholesterol concentrations by 33% (P < 0.001). Low density lipoprotein composition was modified by intake of prickly pear pectin; the relative percentages of free and esterified cholesterol were lower and triglycerides were higher in LDL from animals fed the LC-P diet (P < 0.05). Intake of prickly pear pectin did not affect hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity; however, hepatic free and esterified cholesterol concentrations were lowered by 46 and 64%, respectively. Hepatic apolipoprotein B/E receptor expression (Bmax) was 60% higher in animals fed the LC-P diet (P < 0.01). Similar to the in vitro data, receptor-mediated LDL fractional catabolic rates were 190% higher in animals fed the LC-P diet (P < 0.05), whereas apolipoprotein LDL flux rates were not affected. Apolipoprotein LDL pool size and fractional catabolic rates exhibited a significant correlation (r = -0.52, P < 0.01). These data indicate that an increase in apolipoprotein B/E receptor expression is a major metabolic response by which intake of prickly pear pectin decreases plasma LDL concentrations.
Prickly pear pectin intake decreases plasma LDL concentrations by increasing hepatic apolipoprotein B/E receptor expression in guinea pigs fed a hypercholesterolemic diet. To investigate whether prickly pear pectin has an effect on cholesterol absorption and on enzymes responsible for hepatic cholesterol homeostasis, guinea pigs were fed one of three semipurified diets, each containing 15 g lard/100 g diet: 1) the lard-basal diet with no added cholesterol or prickly pear pectin (LB diet); 2) the LB diet with 0.25 g added cholesterol/100 g diet (LC diet); or 3) the LC diet containing 2.5 g prickly pear pectin/100 g diet, added at the expense of cellulose (LC-P diet). Animals fed the LB diet had the lowest plasma LDL and hepatic cholesterol concentrations, followed by animals fed the LC-P diet (P < 0.001). Hepatic 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase activity was highest in the group fed the LB diet, with similar values for animals in the other two groups. A positive correlation existed between plasma LDL cholesterol concentration and hepatic acyl CoA:cholesterol acyltransferase activity (r = 0.87, P < 0.001). Cholesterol absorption was not different among the three dietary groups. These results indicate that the decreased plasma and hepatic cholesterol concentrations of animals fed prickly pear pectin are not explained by differences in cholesterol absorption but rather are due to mechanisms that alter hepatic cholesterol homeostasis, resulting in lower plasma LDL concentrations.
The effect of prickly pear soluble fiber on low density lipoprotein (LDL) metabolism was investigated by feeding male guinea pigs either a nonpurified diet containing 0.25% cholesterol (HC diet) or the HC diet + 1% prickly pear pectin (HC-P diet). Plasma cholesterol levels were significantly decreased by the HC-P diet, with a 33% decrease in LDL levels (p less than 0.02) and an increase in LDL density. Hepatic free and esterified cholesterol levels were reduced 40 and 85%, respectively (p less than 0.002), by the HC-P diet. Hepatic microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase levels were not different. 125I-LDL binding to hepatic membranes was increased 1.7-fold by the HC-P diet (p less than 0.001), with receptor affinity (Kd) being unaltered and receptor number (Bmax) being significantly increased (p less than 0.001). These data suggest that prickly pear pectin may act by a mechanism similar to that of bile acid-binding resins in lowering plasma cholesterol levels. The observed reduction in LDL and hepatic cholesterol levels and increase in LDL density and hepatic apolipoprotein B/E receptors are responses suggesting an increased demand on hepatic cholesterol from increased excretion of bile acids and interruption of the enterohepatic circulation.
1. The absence of creatine was demonstrated enzymically in the hen's-egg yolk and in the albumin contrary to former reports. 2. A comparison of the results obtained by enzymic and colorimetric methods to measure creatine is presented. 3. Creatine phosphate was not detected in the yolk extracts. 4. The content of free arginine enzymically assayed was 15.7mumol in the yolk and 3.38mumol in the albumin. Arginine amounts to practically all of the guanidine compounds in the yolk and one-half of those in the albumin. 5. No glycine amidinotransferase activity was found in the egg-yolk homogenates. 6. The heart of the chick embryo does not receive creatine from the egg and the creatine kinase activity present in this organ starting from the 27th hour of incubation suggests that the enzyme is a constitutive one working probably as an adenosine triphosphatase in a way similar to the kinase isolated from rabbit skeletal muscle. 7. Liver glycine amidinotransferase activity appeared clearly after day 5 of incubation. The specific activity reached a maximum at day 12 and then declined; however, the activity per total mass of liver increased steadily during all the prenatal period. Concomitantly with this steady increase a rise in the creatine content of the whole embryo was observed. An analogous increasing relationship between total liver amidinotransferase activity and liver creatine content was also detected during the postnatal period. 8. Repression of amidinotransferase by creatine cannot be accepted as occurring under physiological conditions since an inverse relationship between the two parameters was not observed. 9. Repression of liver amidinotransferase is observed only when pharmacological concentrations of the exogenous creatine are present in the chick liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.