There is an interest in single-mode fibers that are highly transparent in the middle infrared. Such fibers would be valuable for spectroscopy, interferometry, fiber lasers, and heterodyne detection. We developed core-clad fibers made of crystalline silver halides, with external diameter 900 μm, small core diameters (50–60 μm) and an extremely small difference (∼0.004) between the indices of refraction of the core and the clad. These fibers behaved as single-mode fibers at the wavelength 10.6 μm.
We demonstrate the modal filtering properties of newly developed single mode silver halide fibers for use at midinfrared wavelengths, centered at 10.5 microm. The goal was to achieve a suppression of nonfundamental modes greater than a factor of 300 to enable the detection and characterization of Earthlike exoplanets with a space-based nulling interferometer. Fiber segments of 4.5 cm, 10.5 cm, 15 cm, and 20 cm lengths were tested. We find that the performance of the fiber was limited not by the modal filtering properties of the core but by the unsuppressed cladding modes present at the output of the fiber. In 10.5 cm and longer sections, this effect can be alleviated by properly aperturing the output. Exclusive of coupling losses, the fiber segments of 10.5-20 cm length can provide power suppression of undesirable components of the input field by a factor of 15,000 at least. The demonstrated performance thus far surpasses our requirements, such that even very short sections of fiber provide adequate modal filtering for exoplanet characterization.
In this letter, we report the design and development of improved step-index silver halide (AgClBr) single mode fibers. These fibers exhibited round and symmetrical field mode distribution while efficiently suppressing the higher order modes. The losses of the fundamental mode were 10–20dB∕m at λ=10.6μm, and the minimum fiber length needed for single mode operation was ∼50cm. These fibers will be useful as spatial filters for middle infrared interferometry.
A flat waveguide for the middle infrared was made by co-extrusion of two silver halide crystals of different chemical compositions. The transmission of the waveguide and its modal behavior was studied using a Fourier Transform Spectrometer and a dedicated optical bench. Analyzing this spectrum, we were able to obtain the cut-off wavelength of the waveguide. We observed a single mode behavior for wavelengths longer than 8.83mum, in good agreement with the theoretically expected values. This novel procedure is ideal for tailoring the properties of the waveguide for specific applications, in particular the spectral range where it exhibits a single-mode behavior. It can thus be applied to achieve modal filtering for mid-IR astronomical interferometers (e.g. beam combiners, nullers, etc.).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.