Crucial aspects in the development of in vitro neuropathogenic disease model systems are the identification, characterization and continuous mitotic expansion of cultured neuronal cells. To facilitate long-term cultivation, we immortalized porcine olfactory neuronally restricted progenitor cells by genomic insertion of a cDNA encoding the catalytic subunit of the human telomerase reverse transcriptase (hTERT) yielding a stable neuroblast subclone (OBGF400). The altered cells exhibited progenitor-cell-like morphology and mitotic competency based on sustained subpassaging, prevalence in the cell cycle G0/G1 phase and an overall lack of cellular senescence as compared to primary cultures. An OBGF400 neuronal phenotype was indicated by the recognition of a transfected neuronal progenitor-cell-specific tubulin-alpha1 gene promoter, intracellular presence of early neuronal markers (TuJ1, neuregulin-1, doublecortin and SOX2) and enhanced expression of neuronal- and progenitor lineage-active genes (MAP2, nestin, ENO and Syn1) compared to that of porcine epithelial cells. These OBGF400 neuroblasts are likely dependent on telomerase to prevent terminal differentiation as subcultures with a predominance of neuronally differentiated members had less enzymatic activity. Based on its susceptibility to a porcine alphaherpesvirus infection, this novel neuroblast cell line may be useful for exploring neuronal cell-pathogen interactions in vitro.
Recently, we established and phenotypically characterized an immortalized porcine olfactory bulb neuroblast cell line, OBGF400 (1). To facilitate the future application of these cells in studies of neurological dysfunctions and neuronal pathogen interactions, a comprehensive knowledge of their genomic variability and overall gene expression capacity was pursued. Accordingly, the OBGF400 cells were subjected to karyotyping and more extensive transcriptome analyses. Cytogenetic characterization of these cells revealed a genetic mosaicism of neuronal hyperdiploidy. A direct comparison of the OBGF400 cell transcriptome pattern, generated by utilizing the Affymetrix GeneChip(R) Porcine Genome Array, to that of a non-neural, porcine epithelial cell line facilitated the identification of 831 probe sets preferentially hybridized by the neuroblast transcripts. Subsequent functional annotation of these OBGF400 RNAs using the Database for Annotation, Visualization and Integrated Discovery 2008 enabled their allocation to the corresponding gene ontology biological process term, thereby assisting the recognition of key elements involved in the regulation of neuronal signal transduction and neurogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.