The till-covered clay and silt deposits at Mertuanoja, Pohjanmaa (Ostrobothnia), western Finland, have been investigated in great detail. The Eemian interglacial environment is reconstructed here on the basis of pollen, diatom and dinoflagellate analyses. The pollen stratigraphy shows an interglacial vegetational succession reflecting stable climatic conditions typical of the Eemian Stage in the Pohjanmaa area. The initial Betula forests were followed by Pinus-Betula forests with Quercus. The next successional phase was dominated by Betula, Pinus and Alnus; temperate deciduous trees and Corylus also grew in the area. Later, Picea advanced and temperate deciduous trees declined. Some Corylus was, however, still present and thennophilous Osmunh thrived in wet places. The diatom record indicates that the sediments were deposited first in a freshwater basin, then in the Eemian Baltic Sea, and finally in a freshwater basin once more. The presence of dinoflagellates demonstrates that the Eemian Baltic Sea, when at its maximum extent, was connected to the Atlantic Ocean. which brought northern cool-temperate surface waters to Finland as far north as Mertuanoja. Mertuanoja is the first interglacial site at which numerous dinoflagellate cysts were encountered in Finnish Quaternary sediments.
A circular Bouguer gravity anomaly with a minimum of -4.0 mGal and halfamplitude width of 2 km was recognized at Lake Iso-Naakkima (62°11'N, 27°09'E), southeastern Finland. The gravity low is associated with subdued aeromagnetic signature and notable airborne and ground electromagnetic anomalies that indicate low bedrock resistivity.The drilling record beneath the recent (Quaternary) glacial sediments, 25-40 m thick, reveals a 100 m thick sequence of unmetamorphosed shale, siltstone, quartz sandstone, kaolinitic clay and conglomeratic sandstone that rest on a weathered mica gneiss basement. The upward fining sequence is characterized by red colour, high kaolinite content, and tilted, distorted and brecciated beds. According to the geophysical modelling the diameter of the whole basin is 3 km and that of the sedimentary rocks 2 km, and the depth is 160 m.Shock lamellas in quartz clasts of the basal conglomeratic sandstone, almost omnipresent kink banding in micas of the rocks beneath the basin floor and the occurrence of polymictic dike breccia in the underlying mica gneiss suggest shock metamorphism. It was concluded that the basin originated by a meteorite impact. However, the impact-generated rocks were subsequently eroded before the sedimentation and only minor marks of shock metamorphism were preserved.Lateritic weathering took place prior to deposition of the sediments. Quartz sandstone and siltstone are interpreted as fluvial deposits and the thinly laminated shales as transgressi ve lacustrine or lagoonal deposits. The microfossil assemblage in the shale includes sphaeromorphs of acritarchs from Late Riphean (Neoproterozoic).Postdepositional subsidence of the Iso-Naakkima basin, shown by tilted sediments, preserved the sequence from further erosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.