We discuss a universal bound on any excitation of heavy fields during inflation: the ratio of the heavy field's energy density to the one driving inflation must be less than the maximally allowed relative amplitude of oscillations in the power-spectrum (ρ h /ρ I 0.01 according to PLANCK). This bound can be traced back to the sudden change of the equation of state parameter across the excitation event.We employ a sudden transition approximation at the perturbed level, which has been used before in different settings; we check its validity by comparison to the full multi-field result in a concrete case study involving a sudden mass change of an inflaton.
We present a technique, based on optical polarizing microscopy, and results of direct observation of the optical interference field effect on the transient domains excited by ac electric field in a nematic planar cell with photosensitive aligning layers. The light source used in a microscope operated in DC mode as well as in triggered pulse one. Obtained microscopic snapshots of transient domain structure confirmed our assumption of the transient domains reordering (trapping) by the low intensity optical interference field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.