The paper overviews the way of creating intumescent fire-protective compositions with improved properties by adding nano-and micro-sized supplements into them. Intumescent paints are inert at low temperatures, and at higher temperatures they expand and degrade to provide a charred layer of low conductivity materials. The modified intumescent paints are able to form a more stable charred layer than the classical paints. The stability of a charred layer is crucial if the fire safety in high-rise construction must be secured, because a weak charred layer will not provide a required fire endurance for steel bearing structures and they will break down in case of fire. The fire-protective properties of modified intumescent paints were estimated using an electrical furnace. Also the way of thermal decomposition of the paints was studied with thermogravimetric analysis. Results show that modified intumescent paints form a charred layer with improved fire-protective properties; it can serve as a thermal barrier for a longer period of time. Thermogravimetric analysis confirms this fact showing that the temperatures of full thermal decay in case of modified paints are higher than those of non-modified paints.
The paper overviews the process of thermolysis of fire-retardants based on melamine, ammonium polyphosphate and pentaerythtritol and containing titanium dioxide of different trademarks. The role of titanium dioxide as a component of fire-retardants is revised. Titanium dioxide was perceived only as white pigment, but this paper states that the properties of a charred layer forming from an intumescent coating depend on the properties of titanium dioxide's species, such as surface treatment and crystalline structure. This statement is proven by using thermal analysis of intumescents with different titanium dioxide's trademarks; it shows that rutile titanium dioxide helps forming a charred layer with the highest thermal stability thus fire retardant efficiency grows up. It means that the knowledge of processes which occur in intumescents based on primary products with different qualities helps to create fire-protective compositions which will perform more reliable in case of fire.
Abstract. The system of space monitoring (SM ) is of great importance, as a means of ensuring environmental safety. This system is based on remote sensing. The structure of SM is a distributed system. This system comprises independent data storage, system control, system of dynamic ratings, capacity and forecasting, control system, information system (IS) processing of monitoring data. As IS it is necessary to choose a geographic information system (GIS). IS monitoring refers to the problem-oriented system. These information systems include specialized databases models. All monitoring systems use sets of models, which allow building complex enterprise models. The peculiarity of the SM is the need to coordinate support of this monitoring and rate of the GIS capacity. Production M anager's decision is the impact on the object of monitoring. Results management and environmental data are received at the monitoring subsystem. Integration of SM and GIS monitoring has led to the creation of geoinformation space monitor (GISM ). The operation of the system GISM is designed to provide a guaranteed result taking into account the capacity. Basis -the decision of the decision makers (DM ). Therefore, an independent scientific and practical interest is the adequate mathematical model of DM .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.