In this paper, composite materials based on cobalt (II) ferrite, which is a promising object of research as a magnetic material, are obtained. Thus, it is known to be used for producing organo / inorganic and non-organo/inorganic compositions. The introduction of cobalt ferrite makes it possible to give new properties to carrier materials. As a carrier, waste from the production of phosphoric acid – phosphogypsum, ash – and – slag waste from thermal power stations and cullet-foam glass, and activated carbon were used. Finding a way to process waste to produce new composite materials is an urgent task of chemical technology. The obtained samples were studied using X-ray phase analysis and electron microscopy. In the course of the conducted research, the principal possibility of using the specified number of production wastes for the synthesis of catalytically active materials is shown. Photocatalytic reactions are widely used in water treatment processes for wastewater treatment from organic pollutants. A simple method for obtaining composite materials of the composition of foam glass/ cobalt ferrite (II), phosphogypsum/ cobalt ferrite (II), activated carbon/ cobalt ferrite (II) is proposed. The catalytic properties of synthesized materials in the process of oxidative destruction of an organic dye in the presence of hydrogen peroxide are studied. It was found that the highest activity under the specified conditions is observed for the activated carbon/ cobalt (II) ferrite composite: complete removal of the organic dye from the aqueous solution is achieved after 90 min from the beginning of the reaction. The phosphogypsum-based composite shows the least pronounced activity. The results obtained can serve as a guide for choosing a method for producing non-toxic materials that are promising for use in water treatment systems and ensuring environmental safety of industrial enterprises that use organic dyes in the production process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.