The Baikal-GVD is a large scale neutrino telescope being constructed in Lake Baikal. The majority of signal detected by the telescope are noise hits, caused primarily by the luminescence of the Baikal water. Separating noise hits from the hits produced by Cherenkov light emitted from the muon track is a challenging part of the muon event reconstruction. We present an algorithm that utilizes a known directional hit causality criterion to contruct a graph of hits and then use a clique-based technique to select the subset of signal hits. The algorithm was tested on realistic detector Monte-Carlo simulation for a wide range of muon energies and has proved to select a pure sample of PMT hits from Cherenkov photons while retaining above 90% of original signal.
The main purpose of the Baikal-GVD Data Quality Monitoring (DQM) system is to monitor the status of the detector and collected data. The system estimates quality of the recorded signals and performs the data validation. The DQM system is integrated with the Baikal-GVD's unified software framework ("BARS") and operates in quasi-online manner. This allows us to react promptly and effectively to the changes in the telescope conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.