Magnetic properties of inhomogeneous nanoisland FeNi films were studied by SQUID magnetometry. The FeNi films with nominal thickness ranging from 0.6 to 2.0 nm were deposited by rf sputtering on Sitall glass substrates and covered by a protecting Al2O3 layer on the top. The SQUID data indicate pronounced irreversibility behavior for the out-of-plane temperature-dependent magnetization response (measured at H≃100 Oe) using zero-field cooling (ZFC) and field-cooled warming (FCW) after the applied dc magnetizing field Hm≃2 T for the FeNi samples with nominal thickness 1.1 nm ≲d≲1.8 nm, below the percolation threshold. The positive difference between the FCW and ZFC data identifies two irreversibility temperature scales, TB≈50 K and T⁎≈200 K, which can be associated with the superparamagnetic and superferromagnetic behavior in inhomogeneous nanoisland FeNi films, respectively. However, above the film percolation threshold, we observed a crossover from the out-of-plane to in-plane magnetization orientation. Here, the in-plane FCW-ZFC difference implies negative remanent magnetization response in the temperature range TB≲T≲T⁎. The observed magnetization properties can be associated with the presence of the superferromagnetic phase in self-assembled clusters of quasi-2D metallic magnetic FeNi nanoislands.
Effect of palladium cap layer thickness on desorption of hydrogen from PrH x films: A spectroscopic ellipsometry study J. Appl. Phys. 90, 1795 (2001); 10.1063/1.1385569Determining thickness of thin metal films with spectroscopic ellipsometry for applications in magnetic randomaccess memory Transition from strong to weak electron localization in a percolating gold film under the influence of an electric field Low Temp.
By using superconducting quantum interference device (SQUID) magnetometry we investigated anisotropic high-field (H 7 T) low-temperature (10 K) magnetization response of inhomogeneous nanoisland FeNi films grown by rf sputtering deposition on Sitall (TiO2) glass substrates. In the grown FeNi films, the FeNi layer nominal thickness varied from 0.6 to 2.5 nm, across the percolation transition at the dc ≃ 1.8 nm. We discovered that, beyond conventional spin-magnetism of Fe21Ni79 permalloy, the extracted out-of-plane magnetization response of the nanoisland FeNi films is not saturated in the range of investigated magnetic fields and exhibits paramagnetic-like behavior. We found that the anomalous out-of-plane magnetization response exhibits an escalating slope with increase in the nominal film thickness from 0.6 to 1.1 nm, however, it decreases with further increase in the film thickness, and then practically vanishes on approaching the FeNi film percolation threshold. At the same time, the in-plane response demonstrates saturation behavior above 1.5-2 T, competing with anomalously large diamagnetic-like response, which becomes pronounced at high magnetic fields. It is possible that the supported-metal interaction leads to the creation of a thin charge-transfer (CT) layer and a Schottky barrier at the FeNi film/Sitall (TiO2) interface. Then, in the system with nanoscale circular domains, the observed anomalous paramagnetic-like magnetization response can be associated with a large orbital moment of the localized electrons. In addition, the inhomogeneous nanoisland FeNi films can possess spontaneous ordering of toroidal moments, which can be either of orbital or spin origin. The system with toroidal inhomogeneity can lead to anomalously strong diamagnetic-like response. The observed magnetization response is determined by the interplay between the paramagnetic-and diamagnetic-like contributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.