PURPOSE. To assess the occurrence and diagnostic performance of nine single-nucleotide variants (SNVs) in the TCF4, SLC4A11, LOXHD1, and AGBL1 genes and the CTG18.1 trinucleotide repeat expansion in a Russian cohort of Fuchs' endothelial corneal dystrophy (FECD) patients. METHODS. This retrospective case-control study included 100 patients diagnosed with FECD (cases) and 100 patients with cataracts (controls). Blood DNA was used to perform PCR and subsequent Sanger sequencing of rs613872 and rs17595731 in TCF4, c.99-100delTC, rs267607065, rs267607064, and rs267607066 in SLC4A11, rs113444922 in LOXHD1, and rs181958589 and rs185919705 in AGBL1. The number of CTG18.1 trinucleotide repeats was determined by a combination of conventional PCR or triplet primed PCR with fragment analysis. RESULTS. At least one rs613872 marker allele was found in 78% of FECD patients and 21% of controls, and at least one rs17595731 marker allele was found in 14% and 2%, respectively. CTG18.1 trinucleotide expansion (>40 repeats) was detected in 72% of FECD patients and 5% of controls. Marker alleles of the tested SNVs in SLC4A11, LOXHD1, and rs185919705 in AGBL1 were not found in our FECD cohort. One FECD patient carried the marker allele of the rs181958589 SNV. Analysis of the diagnostic performance of individual markers in TCF4 and their combinations showed that the CTG18.1 repeat expansion was the best classifier for FECD (AUC ¼ 0.84). CONCLUSIONS. Patients carrying CTG18.1 repeat expansion constituted a high proportion of the Russian FECD cohort; therefore, this marker is suitable for development of diagnostic and therapeutic approaches.
Fuchs endothelial corneal dystrophy (FECD) is a bilateral inherited eye disease with advanced forms only treatable by corneal transplantation. The pathogenesis of FECD has not been worked out yet, however, trinucleotide repeat polymorphism CTG18.1 in the TCF4 gene has recently been associated with late-onset FECD. Gene expression profiling of corneal endothelium with and without this expansion can help elucidate molecular mechanisms of the disease development. Current data article represents whole transcriptome profiles of corneal endothelium obtained from 12 patients with FECD and 6 control tissues from eye bank donors. RNA sequencing data is available at NCBI Sequence Read Archive under Accession No. PRJNA524323. In addition, each patient and donor were genotyped for CTG18.1 expansion and the corresponding numbers of CTG repeats in the TCF4 gene are provided within this article. The dataset includes samples from FECD patients both with and without CTG18.1 expansion.
Keratoconus is a chronic disorder of the cornea, characterized by its progressive thinning, stretching, and conical protrusion. Diagnostics of subclinical keratoconus, as well as its early stages (forme fruste), is a complex problem. The presence of these forms of keratoconus in a patient is one of the reasons for the development of keratectasia after laser refractive surgery. Currently, the role of genetic factors in keratoconus development has been proven. This indicates the possibility of diagnostics of subclinical and forme fruste keratoconus using genetic markers. Knowledge about the patient's genetic susceptibility to keratoconus would allow correcting the tactics of treatment of refractive anomalies and avoiding serious side effects. The studies of causal mutations indicate the genetic heterogeneity of keratoconus, which complicates the development of a diagnostic panel. Selection of candidate variants from the currently known ones based on clear criteria may be one of the approaches for diagnostic markers search. In this review, we have analyzed articles on keratoconus markers in order to form a list of candidate variants for genotyping in the Russian population. The selection criteria took into account the complexes of symptoms in which a marker was found, populations in which a particular marker was investigated, the presence and results of replication studies. The analysis included markers in VSX1, SOD1, ZEB1, LOX, CAST, DOCK9, TGFBI, HGF, MAP3K19, KCND3, COL4A3, COL4A4, COL5A1, FNDC3B, FOXO1, BANP-ZNF469, MPDZ-NF1B, WNT10A genes. Based on the results of the analysis, the following candidate variants were selected for genotyping in the Russian population of patients with keratoconus: rs1536482 and rs7044529 in the COL5A1 gene, rs5745752 and rs2286194 in the HGF gene, rs4954218 in the MAP3K19 gene, rs4839200 near the KCND3 gene, rs2721051 near the FOXO1 gene, rs1324183 between the MPDZ and the NF1B genes, and rs121908120 in the WNT10A gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.