We describe the use of elastographic processing in phase-sensitive optical coherence tomography (OCT) for visualizing dynamics of strain and tissue-shape changes during laser-induced photothermal corneal reshaping, for applications in the emerging field of non-destructive and non-ablative (non-LASIK) laser vision correction. The proposed phase-processing approach based on fairly sparse data acquisition enabled rapid data processing and near-real-time visualization of dynamic strains. The approach avoids conventional phase unwrapping, yet allows for mapping strains even for significantly supra-wavelength inter-frame displacements of scatterers accompanied by multiple phase-wrapping. These developments bode well for real-time feedback systems for controlling the dynamics of corneal deformation with 10-100 ms temporal resolution, and for suitably long-term monitoring of resultant reshaping of the cornea. In ex-vivo experiments with excised rabbit eyes, we demonstrate temporal plastification of cornea that allows shape changes relevant for vision-correction applications without affecting its transparency. We demonstrate OCT's ability to detect achieving of threshold temperatures required for tissue plastification and simultaneously characterize transient and cumulative strain distributions, surface displacements, and scattering tissue properties. Comparison with previously used methods for studying laser-induced reshaping of cartilaginous tissues and numerical simulations is performed.
Moderate heating of such collagenous tissues as cornea and cartilages by infra‐red laser (IR laser) irradiation is an emerging technology for nondestructive modification of the tissue shape and microstructure for a variety of applications in ophthalmology, otolaryngology and so on. Postirradiation high‐resolution microscopic examination indicates the appearance of microscopic either spheroidal or crack‐like narrow pores depending on the tissue type and irradiation regime. Such examinations usually require special tissue preparation (eg, staining, drying that affect microstructure themselves) and are mostly suitable for studying individual pores, whereas evaluation of their averaged parameters, especially in situ, is challenging. Here, we demonstrate the ability of optical coherence tomography (OCT) to visualize areas of pore initiation and evaluate their averaged properties by combining visualization of residual irradiation‐induced tissue dilatation and evaluation of the accompanying Young‐modulus reduction by OCT‐based compressional elastography. We show that the averaged OCT‐based data obtained in situ fairly well agree with the microscopic examination results. The results obtained develop the basis for effective and safe applications of novel nondestructive laser technologies of tissue modification in clinical practice. PICTURE: Elastographic OCT‐based images of an excised rabbit eye cornea subjected to thermomechanical laser‐assisted reshaping. Central panel shows resultant cumulative dilatation in cornea after moderate (~45‐50°C) pulse‐periodic heating by an IR laser together with distribution of the inverse Young modulus 1/E before (left) and after (right) IR irradiation. Significant modulus decrease in the center of irradiated region is caused by initiated micropores. Their parameters can be extracted by analyzing the elastographic images.
It is shown, for the first time, that thermo-mechanical effect of pulse repetitive laser irradiation results in pores formation in sclera. That can be a basis of a novel, safe, and effective technique for IOP normalization due to enhancing of uveoscleral outflow under non-destructive laser irradiation of the sclera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.