We use the data of Wisconsin Hα Mapper (WHAM) to test the hypothesis of whether the amplitudes and spectrum of density fluctuations measured by WHAM can be matched to the data obtained for interstellar scintillations and scattering. To do this, first of all, we adjusted the mean level of signal in the adjacent patches of the data. Then, assuming that the spectrum is Kolmogorov, we successfully matched the amplitudes of turbulence obtained from the WHAM data and the interstellar density fluctuations reported in the existing literature. As a result, we conclude that the existing data is consistent with the Kolmogorov cascade which spans from 10 6 to 10 17 m.
We observed three molecular clouds and four isolated cores at wavelengths from 3.6− 24 µm. The clouds we observed were Ophiuchus, Perseus, and Serpens and the cores were L204C-2, L1152, L1155C-2, and L1228. Our goal was to use these deep infrared data to map changes in the extinction law and the dust properties throughout the observed regions. In our clouds, we found the lowest density regions have an IRAC extinction law similar to the one observed in the diffuse ISM. At higher extinctions, there is evidence for grain growth because the extinction law flattens compared to the diffuse ISM law and becomes more consistent with a model utilizing larger dust grains. In the densest regions of Serpens and Perseus, A K s ≥ 2, it appears icy mantles are forming on the dust grains. We detected one low extinction region in Perseus with an anomalous extinction law that is not explained by current ideas about grain growth or the formation of ices onto dust grains. The extinction law in the cores shows only a slight flattening of the extinction law with increased extinction. Even at the lowest extinctions, the extinction law is more consistent with a dust model containing grain growth, rather than with the diffuse ISM. Two of the four cores have evidence for ices forming the densest regions. Molecular outflows appear to have an impact on the dust grains in two of our cores: L1152 and L1228. In both our clouds and cores, the extinction law at 24 µm is almost always higher than the value predicted by current dust models, but is consistent with other observations. We find some evidence for the 24 µm extinction law decreasing as the extinction increases. Overall, there are relatively few stars with detections ≥ 3σ at 24 µm. More observations are needed to understand the nature of the extinction law at this wavelength.
In this paper we present the results of the statistical analysis of high-latitude Hi turbulence in the Milky Way. We have observed Hi in the 21 cm line, obtained with the Arecibo a L-Band Feed Array (ALFA) receiver at the Arecibo radio telescope. For recovering of velocity statistics we have used the Velocity Coordinate Spectrum (VCS) technique. In our analysis we have used direct fitting of the VCS model, as its asymptotic regimes are questionable for Arecibo's resolution and given the restrictions from thermal smoothing of the turbulent line. We have obtained a velocity spectral index 3.87 ± 0.11, an injection scale of 140 ± 80 pc, and an Hi cold phase temperature of 52 ± 11 K. The spectral index is steeper than the Kolmogorov index and can be interpreted as being due to shock-dominated turbulence.
Turbulent motions induce Doppler shifts of observable emission and absorption lines motivating studies of turbulence using precision spectroscopy. We provide the numerical testing of the two most promising techniques, Velocity Channel Analysis (VCA) and Velocity Coordinate Spectrum (VCS). We obtain an expression for the shot noise that the discretization of the numerical data entails and successfully test it. We show that the numerical resolution required for recovering the underlying turbulent spectrum from observations depend on the spectral index of velocity fluctuations, which makes low resolution testing misleading. We demonstrate numerically that, dealing with absorption lines, sampling of turbulence along just a dozen directions provides a high quality spectrum with the VCS technique.
We present the results of the Velocity Coordinate Spectrum (VCS) technique to calculate the velocity power spectrum of turbulence in the Small Magellanic Cloud (SMC) in 21 cm emission. We present an updated version of the VCS technique that takes into account regular motions, which is an important factor in our SMC VCS analysis. We have obtained a velocity spectral index of −3.85, a cold phase sonic Mach number of 5.6, and an injection scale of 2.3 kpc. The spectral index is steeper than the Kolmogorov index, which is expected for shock-dominated turbulence. The injection scale of 2.3 kpc suggests that HI supershells or tidal interactions with the Large Magellanic Cloud are the dominant drivers of turbulence in this dwarf galaxy. This implies that turbulence may be driven by multiple mechanisms in galaxies and that galaxy-galaxy interactions may play an important role in addition to supernova feedback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.