We report on gas-phase experimental and theoretical studies on the neutral form of the green-fluorescent protein (GFP) chromophore using six different models, each carrying a spectator positive charge. Theoretical studies were carried out to quantify the effect of the spectator charge on the absorption maximum of the true neutral. The study also includes models having the possibility of forming intra-molecular hydrogen bonds, and their effect on the absorption profile is analyzed. The charge redistribution caused by a strong intra-molecular hydrogen bond was found to give rise to a red shift in going from non-hydrogen bonded to hydrogen bonded models. For the non-hydrogen bonded models, the length of the side chain as well as the group carrying the spectator charge, was varied to explore the possibility of shifts in absorption maximum due to these variations. No shifts were observed. The implications of these results in tuning the absorption maximum of the neutral form of the GFP chromophores are discussed.
Based on the combination of experimental measurements and first-principles calculations we report a novel carbon-based catalytic material and describe significant acceleration of the hydrogenation of magnesium at room temperature in the presence of nickel nanoparticles wrapped in multilayer graphene. The increase in rate of magnesium hydrogenation in contrast to a mix of graphite and nickel nanoparticles evidences intrinsic catalytic properties of the nanocomposites explored. The results from simulation demonstrate that doping of the metal substrate and the presence of Stone-Wales defects turn multilayer graphene from being chemically inert to chemically active. The role of the size of the nanoparticles and temperature are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.