We demonstrate that measurements of the photoelectromagnetic effect using terahertz laser radiation may provide a unique opportunity to discriminate between the topological surface states and other highly conductive surface electron states. We performed a case study of mixed (Bi -x 1 In x ) 2 Se 3 crystals undergoing a topological phase transformation due to the transition from the inverse to the direct electron energy spectrum in the crystal bulk at variation of the compositionx. We show that for the topological insulator phase, the photoelectromagnetic effect amplitude is defined by the number of incident radiation quanta, whereas for the trivial insulator phase, it depends on the power in a laser pulse irrespective of its wavelength. We assume that such behavior is attributed to a strong damping of the electron-electron interaction in the topological insulator phase compared to the trivial insulator.
We demonstrate that measurements of the photo-electromagnetic effect using terahertz laser radiation provide an argument for the existence of highly conductive surface electron states with a spin texture in Dirac semimetals (Cd1−
xZnx)3As2. We performed a study on a range of (Cd1−
xZnx)3As2 mixed crystals undergoing a transition from the Dirac semimetal phase with an inverse electron energy spectrum to trivial a semiconductor with a direct spectrum in the crystal bulk by varying the composition x. We show that for the Dirac semimetal phase, the photo-electromagnetic effect amplitude is defined by the number of incident radiation quanta, whereas for the trivial semiconductor phase, it depends on the laser pulse power, irrespective of wavelength. We assume that such behavior is attributed to a strong damping of the interelectron interaction in the Dirac semimetal phase compared to the trivial semiconductor, which may be due to the formation of surface electron states with a spin texture in Dirac semimetals.
Terahertz photoconductivity in heterostructures based on n-type Hg1−
xCdxTe epitaxial films both in the topological phase (x < 0.16, inverted band structure, zero band gap) and the trivial state (x > 0.16, normal band structure) has been studied. We show that both the positive photoresponse in films with x < 0.16 and the negative photoconductivity in samples with x > 0.16 have no low-energy threshold. The observed non-threshold positive photoconductivity is discussed in terms of a qualitative model that takes into account a 3D potential well and 2D topological Dirac states coexisting in a smooth topological heterojunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.