In May 2020 the Russian Ministry of Health granted fast-track marketing authorization to RNA polymerase inhibitor AVIFAVIR (favipiravir) for the treatment of COVID-19 patients. In the pilot stage of Phase II/III clinical trial, AVIFAVIR enabled SARS-CoV-2 viral clearance in 62.5% of patients within 4 days, and was safe and well-tolerated.
We developed a computational algorithm for evaluating the possibility of cytochrome P450-mediated metabolic transformations that xenobiotics molecules undergo in the human body. First, we compiled a database of known human cytochrome P-450 substrates, products, and nonsubstrates for 38 enzyme-specific groups (total of 2200 compounds). Second, we determined the cytochrome-mediated metabolic reactions most typical for each group and examined the substrates and products of these reactions. To assess the probability of P450 transformations of novel compounds, we built a nonlinear quantitative structure-metabolism relationships (QSMR) model based on Kohonen self-organizing maps (SOM). This neural network QSMR model incorporated a predefined set of physicochemical descriptors encoding the key molecular properties that define the metabolic fate of individual molecules. Isozyme-specific groups of substrate molecules were visualized, thus facilitating prediction of tissue-specific metabolism. The developed algorithm can be used in early stages of drug discovery as an efficient tool for the assessment of human metabolism and toxicity of novel compounds in designing discovery libraries and in lead optimization.
In May 2020 the Russian Ministry of Health granted fast-track marketing authorization to RNA polymerase inhibitor AVIFAVIR (favipiravir) for the treatment of COVID-19 patients. In the pilot stage of Phase II/III clinical trial, AVIFAVIR enabled SARS-CoV-2 viral clearance in 62.5% of patients within 4 days, and was safe and well-tolerated.
Solubility of organic compounds in DMSO is an important issue for commercial and academic organizations handling large compound collections or performing biological screening. In particular, solubility data are critical for the optimization of storage conditions and for the selection of compounds for bioscreening compatible with the assay protocol. Solubility is largely determined by the solvation energy and the crystal disruption energy, and these molecular phenomena should be assessed in structure-solubility correlation studies. The authors summarize our long-term experimental observations and theoretical studies of physicochemical determinants of DMSO solubility of organic substances. They compiled a comprehensive reference database of proprietary data on compound solubility (55,277 compounds with good DMSO solubility and 10,223 compounds with poor DMSO solubility), calculated specific molecular descriptors (topological, electromagnetic, charge, and lipophilicity parameters), and applied an advanced machine-learning approach for training neural networks to address the solubility. Both supervised (feed-forward, back-propagated neural networks) and unsupervised (Kohonen neural networks) learning methods were used. The resulting neural network models were validated by successfully predicting DMSO solubility of compounds in independent test selections. (Journal of Biomolecular Screening 2004:22-31)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.