517.983.27 Using the functional discrete approach and Adomian polynomials, we propose a numerical algorithm for an eigenvalue problem with a potential that consists of a nonlinear autonomous part and a linear part depending on an independent variable. We prove that the rate of convergence of the algorithm is exponential and improves as the order number of an eigenvalue increases. We investigate the mutual influence of the piecewise-constant approximation of the linear part of the potential and the nonlinearity on the rate of convergence of the method. Theoretical results are confirmed by numerical data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.