We identify the leading term describing the behavior at large distances of the steady state solutions of the Navier-Stokes equations in 3D exterior domains with vanishing velocity at the spatial infinity.
In this work, we report the results of comprehensive experimental and theoretical study of magnetic properties of TiO 2 nanoparticles (20 nm) doped with Fe at various concentrations ranging from 0.1 to 4.6 at. %. Our electron paramagnetic resonance and magnetic measurements data evidence the mixed magnetic state, where paramagnetic Fe 3+ ions coexist with short-range antiferromagnetic correlations caused by negative exchange interaction between neighboring Fe 3+ ions. A quantum mechanical model of the Fe-based magnetic cluster represented as a set of dimers with strong ∼(100−300) K and weak (∼1 K) exchange interactions has been proposed. Our model was found to provide a good description of magnetic properties of TiO 2 :Fe nanopowders. Density-functional theory (DFT) calculations revealed Fe 3+ oxidation state of the iron center in the vicinity of an oxygen vacancy in the crystal structure of anatase. DFT calculations confirmed that two types of Fe 3+ spin-pairs with weak and strong exchange interactions can be formed in the vicinity of an oxygen vacancy. Accumulation of magnetic moment carriers and formation of magnetic clusters in TiO 2 nanoparticles with anatase structure were found to be a general tendency for all studied TiO 2 :Fe nanopowders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.