In their recent paper [1] Alday, Gaiotto and Tachikawa proposed a relation between N = 2 fourdimensional supersymmetric gauge theories and two-dimensional conformal field theories. As part of their conjecture they gave an explicit combinatorial formula for the expansion of the conformal blocks inspired from the exact form of instanton part of the Nekrasov partition function. In this paper we study the origin of such an expansion from a CFT point of view. We consider the algebra A = Vir ⊗ H which is the tensor product of mutually commuting Virasoro and Heisenberg algebras and discover the special orthogonal basis of states in the highest weight representations of A. The matrix elements of primary fields in this basis have a very simple factorized form and coincide with the function called Z bif appearing in the instanton counting literature. Having such a simple basis, the problem of computation of the conformal blocks simplifies drastically and can be shown to lead to the expansion proposed in [1]. We found that this basis diagonalizes an infinite system of commuting Integrals of Motion related to Benjamin-Ono integrable hierarchy.
Two-dimensional sl(n) quantum Toda field theory on a sphere is considered. This theory provides an important example of conformal field theory with higher spin symmetry. We derive the three-point correlation functions of the exponential fields if one of the three fields has a special form. In this case it is possible to write down and solve explicitly the differential equation for the four-point correlation function if the fourth field is completely degenerate. We give also expressions for the three-point correlation functions in the cases, when they can be expressed in terms of known functions. The semiclassical and minisuperspace approaches in the conformal Toda field theory are studied and the results coming from these approaches are compared with the proposed analytical expression for the three-point correlation function. We show, that in the framework of semiclassical and minisuperspace approaches general three-point correlation function can be reduced to the finite-dimensional integral.
We study the classical c → ∞ limit of the Virasoro conformal blocks. We point out that the classical limit of the simplest nontrivial null-vector decoupling equation on a sphere leads to the Painlevé VI equation. This gives the explicit representation of generic four-point classical conformal block in terms of the regularized action evaluated on certain solution of the Painlevé VI equation. As a simple consequence, the monodromy problem of the Heun equation is related to the connection problem for the Painlevé VI. * On leave of absence
Recently proposed relation between conformal field theories in two dimensions and supersymmetric gauge theories in four dimensions predicts the existence of the distinguished basis in the space of local fields in CFT. This basis has a number of remarkable properties, one of them is the complete factorization of the coefficients of the operator product expansion. We consider a particular case of the U (r) gauge theory on C 2 /Z p which corresponds to a certain coset conformal field theory and describe the properties of this basis. We argue that in the case p = 2, r = 2 there exist different bases. We give an explicit construction of one of them. For another basis we propose the formula for matrix elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.