ZnO nanoparticles (NPs) formed in Czochralski-grown n-type (100) silicon substrates have been studied. The NPs were formed by co-implantation of 64Zn+ and 16O+ ions followed by furnace annealing in neutral/inert atmospheres for 1h. High-resolution transmission electron microscopy (HR TEM) of cross-section samples enabled the structural properties of the near surface layers to be characterized after implantation and annealing. The distribution of implant profiles was analyzed by secondary ion mass-spectrometry (SIMS). The surface morphology was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Identification of the phase content of the materials was carried out by high-resolution X-ray diffraction in θ-2θ scanning mode. In as-implanted samples, a big amorphous layer was formed which destroyed the NPs beneath the surface. After furnace annealing from 600 up to 800°C, ZnO(102) NPs with a size of ~7nm were formed in the recrystallization layer. Furnace annealing at temperatures above 900 °C gave rise to a restructuring of the silicon surface and ZnO NPs formed on the sample surface. At temperatures above 1000 °C, out-diffusion of Zn from the sample occurred due to the large diffusion coefficient Zn at these temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.