-The contrast enhancement is great challenge in the image processing when images are suffering from poor contrast problem. Therefore, in order to overcome this problem an automatic method is proposed for contrast enhancement of natural color images. The proposed method consist of two stages: in first stage lightness component in YIQ color space is normalized by sigmoid function after the adaptive histogram equalization is applied on Y component and in second stage automatic color contrast enhancement algorithm is applied on output of the first stage. The proposed algorithm is tested on different NASA color images, hyperspectral color images and other types of natural color images. The performance of proposed algorithm is evaluated and compared with the other existing contrast enhancement algorithms in terms of colorfulness metric and color enhancement factor. The higher values of colorfulness metric and color enhancement factor imply that the visual quality of the enhanced image is good. Simulation results demonstrate that proposed algorithm provides higher values of colorfulness metric and color enhancement factor as compared to other existing contrast enhancement algorithms. The proposed algorithm also provides better visual enhancement results as compared with the other existing contrast enhancement algorithms.
Lane detection algorithms have been the key enablers for a fully-assistive and autonomous navigation systems. In this paper, a novel and pragmatic approach for lane detection is proposed using a convolutional neural network (CNN) model based on SegNet encoder-decoder architecture. The encoder block renders low-resolution feature maps of the input and the decoder block provides pixel-wise classification from the feature maps. The proposed model has been trained over 2000 image data-set and tested against their corresponding groundtruth provided in the data-set for evaluation. To enable real-time navigation, we extend our model's predictions interfacing it with the existing Google APIs evaluating the metrics of the model tuning the hyper-parameters. The novelty of this approach lies in the integration of existing segnet architecture with google APIs. This interface makes it handy for assistive robotic systems. The observed results show that the proposed method is robust under challenging occlusion conditions due to pre-processing involved and gives superior performance when compared to the existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.