In the search for more optimal core materials for a water cooled reactor at extended burnup, much attention is paid to alloys of the Zr-Nb and Zr-Nb-Fe-Sn systems. E110 and E635 alloys are two such. In the current VVER fuel cycle, the E110 alloy is used as fuel cladding and in SG components. The E635 alloy is under development as a fuel cladding and for fuel assembly structural elements for water cooled reactors of the VVER and RBMK types. E110, while having a unique corrosion resistance in pressurized water reactors, is subject to noticeable disadvantages in terms of corrosion resistance under conditions of boiling and higher coolant oxygen contents as well as in deformation stability under stresses and irradiation. Currently, the E635 alloy has passed the most important steps of qualification and is being introduced into cores as a material for guide thimbles, central tubes, and stiff frame angles in VVER-1000 FAA and FA-2. Properties of alloys are governed by their compositions and microstructure and even small changes in composition (Nb, Fe, Sn) and processing (heating in the α or the α+β regions) lead to substantial changes in properties as a result of changes in second phase precipitates and matrix composition. ATEM was used to study structure—phase states of a series of alloys Zr-(0.6–1.2) Nb-(0–0.6) Fe-(0–1.5) Sn (% weight), to determine the microstructural characteristics of recrystallized cladding tubes and the temperature stability regions of β-Nb, β-Zr, Zr(Nb,Fe)2, and (Zr,Nb)2Fe second phase precipitates. An increase in the relative content of iron R=Fe/(Fe+Nb) results in a larger volume fraction of (Zr,Nb)2 Fe precipitates. β-Nb and Zr(Nb,Fe)2 particles are completely dissolved at ⩽750°C, the (Zr,Nb)2Fe phase at ⩽800°C. Autoclave corrosion tests revealed that the corrosion resistance of the materials depends on alloy composition. The content of tin lowered down to 0.8 % reduces weight gains in water, water containing Li, and particularly in steam. The content of Nb reduced to 0.6 % results in lower weight gains in water and steam and higher weight gains in Li containing water. The optimal content of iron in Zr-Nb-Fe-Sn alloys for corrosion resistance depends on the R ratio and makes up 0.2–0.4 %. Tests of samples produced from tubes of the above alloys and irradiated in BOR-60 at 315–345°C show that alloying Zr-Nb alloys with iron and tin improves their resistance to irradiation growth and creep. Sn and a higher Fe content in solid solution effected by transfer of Fe from the Laves phase precipitates to the matrix under irradiation strengthens the alloys. The influence of irradiation on phase compositions was established using irradiated samples (gas filled and unstressed) of cladding tubes: β-Nb (85–90 % Nb) precipitates become depleted in niobium (or enriched in zirconium) to 50–60 % Nb and finely dispersed irradiation induced second particles (IIPs) enriched in niobium are formed. The Laves phase becomes depleted in iron and alters its crystal structure from hcp to bcc of the β-Nb type. The fcc (Zr,Nb)2Fe precipitates retain on the whole their composition and structure, but the peripheries of particles reveal structural features, possibly related to niobium redistribution. No amorphization of any of the precipitates was identified. Alloy composition and applied stress under irradiation influence density and distribution of dislocation loops and IIP precipitates. Proceeding from results of out-of-pile and from post-irradiation examinations of the structure and properties of E110 and E635 type cladding tubes, compositions of alloys having improved corrosion and irradiation resistances are proposed. E110 type (Zr-1Nb-0.1Fe-0.1O) alloy features enhanced strength characteristics as a result of iron transfer from Laves phase precipitates to the matrix under irradiation, lower irradiation induced growth strain, and irradiation-thermal creep. An E635 type alloy (tin and niobium content lowered down to <0.8 %) has a higher corrosion resistance and comparable creep and growth resistance as compared to the standard E635 alloy.
This paper is devoted to the study of the effect of the texture, phase composition, and microstructure on the irradiation-induced growth strain (GS) of zirconium-based alloys. GS measurements and TEM microstructural examinations were performed on Zry-2, NSF, and E635 samples in the recrystallized, beta quenched and cold-worked (CW) conditions. The samples were irradiated in the BOR-60 reactor in the temperature range of 315–325°C up to a neutron fluence level of 1.1 × 1026 n/m2 (E>1MeV), i.e., up to a damage dose of 23 dpa. Growth strains of NSF and E635 alloys in all states and in the longitudinal and transverse directions are lower as compared to those of Zry-2, and do not exceed 0.2 % even at the maximum fluence level. As for recrystallized Zry-2, the GS kinetics are characterized by the appearance of the accelerated growth stage. A combination of a certain amount of Nb, Fe, and Sn in the matrix content plays a key role in GS kinetics. The higher the degree of CW, the higher the irradiation growth but its rate of increase with increasing fluence is different for alloys of different compositions. The maximum GS, reaching 0.72 %, is observed in the 20 % CW Zry-2 samples. Texture, along with the alloy composition, is one of the main GS-determining factors. Irradiation growth of the transversal samples is lower as compared to the longitudinal ones because of texture. As for quenched alloys, the texture is practically isotropic and GS values are low, independent of the alloy composition. In CW materials, the density of ‹c›- dislocations greatly affects the irradiation growth strain. Particles of Zr(Fe,Cr)2 and Zr2(Fe,Ni) phases in Zry-2 as well as Zr(Nb,Fe)2 in NSF and E635 are depleted in iron under irradiation. The Fe goes into the matrix and modifies its properties. The HCP lattice structure in the Laves phases in NSF and E635 changes into BCC (β-Nb-type). FCC (Zr,Nb)2Fe precipitates preserve on the whole their composition and structure; no amorphization of the Nb-containing precipitates is observed. The Zr2(Fe,Ni) precipitates with a BCT lattice remain crystalline, and HCP Zr(Cr,Fe)2 precipitates undergo amorphization. The average particle size in the irradiated alloys is larger and the concentration is a little lower as compared to the unirradiated ones. Irradiation-induced fine dispersed precipitates about 3 nm in size, probably enriched in niobium, appear in NSF and E635. The observed changes of microhardness are discussed from the viewpoint of generation of radiation defects (clusters, dislocation loops), evolution of the initial dislocation structure, and matrix composition (enrichment in Fe, Cr, and, probably, Nb).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.