The propagation and interaction of two dimensional bipolar electromagnetic pulses in an array of semiconducting carbon nanotubes have been investigated. The electromagnetic field in the array of carbon nanotubes has been described by the Maxwell's equations reduced to the non one dimensional wave equa tion. The initial distribution of the field has been specified in the form of approaching breathers bounded by a Gaussian profile in the plane perpendicular to the pulse propagation direction. The numerical solution of the wave equation has revealed the possibility of stable propagation of breathers in the array of carbon nano tubes. It has been found that the interaction of electromagnetic breathers in the array of semiconducting car bon nanotubes has a character of quasi elastic collisions.
In this paper we study the electron energy spectrum corresponding to Landau levels in doped graphene when an external magnetic field is applied in the direction normal to the graphene planar sheet. The derived dispersion relation for the electrons in the doped graphene allows us to determine the dependence of the electrical conductivity on the applied magnetic field. This relationship between electrical conductivity and applied magnetic field is further analyzed for different characteristics of the impurities; specifically the potential of hybridization and the energy of the adsorbed atom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.