An effect of tempforming on the microstructure, the carbide precipitation, and the strengthening mechanisms of high-strength low-alloyed steel has been analyzed. The quenched steel was subjected to 1 h tempering at a temperature of 873 K, 923 K, or 973 K followed by plate rolling at the same temperature. Tempforming resulted in the formation of an ultrafine grained lamellar-type microstructure with finely dispersed carbides of (Nb,V)C, Fe3C and Cr23C6. A decrease in tempforming temperature resulted in a reduction of the transverse grain size from 950 nm to 350 nm. Correspondingly, the size of Fe3C/Cr23C6 particles decreased from 90 nm to 40 nm while the size of (Nb,V)C particles decreased from 17 nm to 4 nm. Refining the tempformed microstructure with a decrease in thetempforming temperature provided an increase in the yield strength from 690 MPa to 1230 MPa.
The effect of tempforming on the strength and fracture toughness of 0.4%C-2%Si-1%Cr-1%Mo-VNb steel was examined. Plate rolling followed by tempering at the same temperature of 600 °C increases yield stress by 25% and the Charpy V-notch impact energy by a factor of ~10. Increasing rolling reduction leads to the reorientation and elongation of grains toward the rolling direction (RD) and the development of a strong {001} <110> (rotated cube) texture component that highly enhances fracture toughness. A lamellar structure with a spacing of 72 nm between boundaries and a lattice dislocation density of ~1015 m−2 evolves after tempforming at 600 °C with a total strain of 1.4. Two types of delamination were found, attributed to crack branching and the propagation of secondary cracks along the rolling plane perpendicular to the propagation direction of the primary crack. Delamination toughness is associated with the nucleation of secondary cracks in RD and their propagation over a large distance. The critical condition for delamination toughness is the propagation of primary cracks by the ductile fracture mechanism and the propagation of secondary cracks by the brittle quasi-cleavage mechanism.
In this study, the team of authors solves the problem of increasing the energy efficiency of power plants by reducing losses while lowering the coefficient of friction. This problem is solved with the help of a multifunctional additive to lubricating oils, which are a surface-active substance (surfactant) capable of changing the friction conditions of contacting surfaces in a small amount when introduced into tribological units. The tests were carried out on a friction machine II5018 on a block-roller friction pair (the material of the roller is gray cast iron SCh20, the material of the block is steel 65). During the study, the moment and coefficient of friction were determined. A friction coefficient decrease of up to 50 % was obtained, which proves the effectiveness of the proposed compositions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.