We combined year-round eddy covariance with biometry and biomass harvests along a chronosequence of boreal forest stands that were 1, 6, 15, 23, 40, $ 74, and $ 154 years old to understand how ecosystem production and carbon stocks change during recovery from stand-replacing crown fire. Live biomass (C live ) was low in the 1-and 6-year-old stands, and increased following a logistic pattern to high levels in the 74-and 154-year-old stands. Carbon stocks in the forest floor (C forest floor ) and coarse woody debris (C CWD ) were comparatively high in the 1-year-old stand, reduced in the 6-through 40-year-old stands, and highest in the 74-and 154-year-old stands. Total net primary production (TNPP) was reduced in the 1-and 6-year-old stands, highest in the 23-through 74-year-old stands and somewhat reduced in the 154-year-old stand. The NPP decline at the 154-year-old stand was related to increased autotrophic respiration rather than decreased gross primary production (GPP). Net ecosystem production (NEP), calculated by integrated eddy covariance, indicated the 1-and 6-year-old stands were losing carbon, the 15-year-old stand was gaining a small amount of carbon, the 23-and 74-year-old stands were gaining considerable carbon, and the 40-and 154-year-old stands were gaining modest amounts of carbon. The recovery from fire was rapid; a linear fit through the NEP observations at the 6-and 15-year-old stands indicated the transition from carbon source to sink occurred within 11-12 years. The NEP decline at the 154-year-old stand appears related to increased losses from C live by tree mortality and possibly from C forest floor by decomposition. Our findings support the idea that NPP, carbon production efficiency (NPP/GPP), NEP, and carbon storage efficiency (NEP/TNPP) all decrease in old boreal stands.
In this paper, we present a conceptual framework for investigating ecological patterns and processes at regional to continental scales. Ecological phenomena operate across a range of scales (Figure 1), but the development of ecological theory of regions to continents lags behind that of finer scales. Better understanding of broad scales is needed because these are the extents over which many environmental problems have their causes and consequences. Our framework incorporates existing theories from other ecological subdisciplines and environmental disciplines, to promote broad-scale ecology as more general, integrative, and predictive.We define "macroscales" as regional to continental extents with distances spanning hundreds to thousands of kilometers (ie larger than landscapes; Urban et al. 1987). "Components" at these spatial scales (Figure 2) are biological (eg species, populations, communities), geophysical (eg climate, physiography, hydrology, geochemistry), and social (eg political systems, economies, cultures), and can span timescales ranging from days to millennia. When interacting with one another and with phenomena at other spatial or temporal scales, these components constitute a "macrosystem"; macrosystems ecology (MSE) is the study of such extensive and multiscaled systems. This perspective treats patterns and processes as dynamic and interactive, both within and across scales of time and space.n MotivationsThe emergence of MSE has been driven by three main factors: pressing societal needs for ecological predictions at these wider scales; the increasing focus on mechanistic studies that cover broad extents across a range of ecological subdisciplines; and a wealth of new methodological and technological capabilities that enable scientists to carry out such studies. These three interrelated issues will continue to shape the development of MSE.Ecologists are increasingly asked to address environmental problems and policies with causes and consequences that operate over broad extents (Clark et al. 2001;Peters et al. 2011;Liu et al. 2013). For example, scientists and policy makers are unsure how climate and land-use changes will influence the provision of multiple ecosystem services, at both local and regional scales (Qiu Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sou...
Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite-observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory-2 (OCO-2) provides the first opportunity to examine the SIF-GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO-2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO-2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R = 0.57-0.79, p < 0.0001) except evergreen broadleaf forests (R = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C grasslands and croplands than for C ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome-specific SIF-GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO-2 SIF generally had a better performance for predicting GPP than satellite-derived vegetation indices and a light use efficiency model. The universal SIF-GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO-2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.
As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.